Steiner Problem in the Gromov-Hausdorff Space: The Case of Finite Metric Spaces


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Steiner problem is considered in the Gromov-Hausdorff space, i.e., in the space of compact metric spaces (considered up to isometry) endowed with the Gromov-Hausdorff distance. Since this space is not boundedly compact, the problem of the existence of a shortest network in this space is open. It is shown that each finite family of finite metric spaces can be connected by a shortest network. Moreover, it turns out that in this case there exists a shortest tree all of whose vertices are finite metric spaces. An estimate for the number of points in these metric spaces is obtained. As an example, the case of three-point metric spaces is considered. It is also shown that the Gromov-Hausdorff space does not realize minimal fillings; i.e., shortest trees in this space need not be minimal fillings of their boundaries.

Авторлар туралы

A. Ivanov

Faculty of Mechanics and Mathematics; Bauman Moscow State Technical University

Хат алмасуға жауапты Автор.
Email: aoiva@mech.math.msu.su
Ресей, Moscow, 119991; Moscow, 105005

N. Nikolaeva

Orthodox St. Peter’s School

Хат алмасуға жауапты Автор.
Email: nadkostnik@mail.ru
Ресей, Moscow, 109028

A. Tuzhilin

Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: tuz@mech.math.msu.su
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019