Steiner Problem in the Gromov-Hausdorff Space: The Case of Finite Metric Spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Steiner problem is considered in the Gromov-Hausdorff space, i.e., in the space of compact metric spaces (considered up to isometry) endowed with the Gromov-Hausdorff distance. Since this space is not boundedly compact, the problem of the existence of a shortest network in this space is open. It is shown that each finite family of finite metric spaces can be connected by a shortest network. Moreover, it turns out that in this case there exists a shortest tree all of whose vertices are finite metric spaces. An estimate for the number of points in these metric spaces is obtained. As an example, the case of three-point metric spaces is considered. It is also shown that the Gromov-Hausdorff space does not realize minimal fillings; i.e., shortest trees in this space need not be minimal fillings of their boundaries.

Sobre autores

A. Ivanov

Faculty of Mechanics and Mathematics; Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: aoiva@mech.math.msu.su
Rússia, Moscow, 119991; Moscow, 105005

N. Nikolaeva

Orthodox St. Peter’s School

Autor responsável pela correspondência
Email: nadkostnik@mail.ru
Rússia, Moscow, 109028

A. Tuzhilin

Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: tuz@mech.math.msu.su
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019