Torus Actions of Complexity 1 and Their Local Properties


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider an effective action of a compact (n − 1)-torus on a smooth 2n-manifold with isolated fixed points. We prove that under certain conditions the orbit space is a closed topological manifold. In particular, this holds for certain torus actions with disconnected stabilizers. There is a filtration of the orbit manifold by orbit dimensions. The subset of orbits of dimensions less than n − 1 has a specific topology, which is axiomatized in the notion of a sponge. In many cases the original manifold can be recovered from its orbit manifold, the sponge, and the weights of tangent representations at fixed points. We elaborate on the introduced notions using specific examples: the Grassmann manifold G4,2, the complete flag manifold F3, and quasitoric manifolds with an induced action of a subtorus of complexity 1.

Авторлар туралы

Anton Ayzenberg

Faculty of Computer Science

Хат алмасуға жауапты Автор.
Email: ayzenberga@gmail.com
Ресей, Kochnovskii proezd 3, Moscow, 125319

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018