A Method for the Construction of Wavelet Analogs by Means of Trigonometric B-Splines
- 作者: Shevaldin V.T.1
-
隶属关系:
- Krasovskii Institute of Mathematics and Mechanics
- 期: 卷 300, 编号 Suppl 1 (2018)
- 页面: 165-171
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175512
- DOI: https://doi.org/10.1134/S0081543818020165
- ID: 175512
如何引用文章
详细
We construct an analog of two-scale relations for basis trigonometric splines with uniform knots corresponding to a linear differential operator of order 2r + 1 with constant coefficients L2r+1(D) = D(D2 + α12 )(D2 + α22 )... (D2 + αr2 ), where α1, α2,..., αr are arbitrary positive numbers. The properties of nested subspaces of trigonometric splines are analyzed.
作者简介
V. Shevaldin
Krasovskii Institute of Mathematics and Mechanics
编辑信件的主要联系方式.
Email: Valerii.Shevaldin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990
补充文件
