Stabilizers of Vertices of Graphs with Primitive Automorphism Groups and a Strong Version of the Sims Conjecture. IV


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This is the fourth in a series of papers whose results imply the validity of a strong version of the Sims conjecture on finite primitive permutation groups. In this paper, the case of primitive groups with a simple socle of orthogonal Lie type and nonparabolic point stabilizer is considered. Let G be a finite group, and let M1 and M2 be distinct conjugate maximal subgroups of G. For any i ∈ ℕ, we define inductively subgroups (M1, M2)i and (M2, M1)i of M1M2, which will be called the ith mutual cores of M1 with respect to M2 and of M2 with respect to M1, respectively. Put \({\left( {{M_1},\,{M_2}} \right)^1} = {\left( {{M_1} \cap {M_2}} \right)_{{M_1}}}\) and \({\left( {{M_2},\,{M_1}} \right)^1} = {\left( {{M_1} \cap {M_2}} \right)_{{M_2}}}\). For i ∈ ℕ, assuming that (M1, M2)i and (M2, M1)i are already defined, put \({\left( {{M_1},{M_2}} \right)^{i + 1}} = {\left( {{{\left( {{M_1},\,{M_2}} \right)}^i} \cap {{\left( {{M_2},{M_1}} \right)}^i}} \right)_{{M_1}}}\) and \({\left( {{M_2},{M_1}} \right)^{i + 1}} = {\left( {{{\left( {{M_1},\,{M_2}} \right)}^i} \cap {{\left( {{M_2},{M_1}} \right)}^i}} \right)_{M2}}\). We are interested in the case where (M1)G = (M2)G = 1 and 1 < ∣(M1, M2)2 ∣ ≤ ∣(M2, M1)2∣. The set of all such triples (G, M1, M2) is denoted by Π. We consider triples from Π up to the following equivalence: triples (G, M1, M2) and (G′, \(M_1^\prime \), \(M_2^\prime \)) from Π are equivalent if there exists an isomorphism of G onto G′ mapping M1 onto \(M_1^\prime \) and M2 onto \(M_2^\prime \). In the present paper, the following theorem is proved.

Theorem. Suppose that (G, M1, M2) ∈ Π, L = Soc(G) is a simple orthogonal group of dimension ≥ 7, and M1L is a nonparabolic subgroup of L. Then\(L \cong O_8^ + \left( r \right)\), where r is an odd prime, (M1, M2)3 = (M2, M1)3 = 1, and one of the following holds

(a) r ≡ ±1 (mod 8), G is isomorphic to\(O_8^ + \left( r \right)\,:\;\mathbb{Z}_3\)or\(O_8^ + \left( r \right)\,\;:\;\>{S_3}\), (M1, M2)2 = Z (O2(M1)) and (M2, M1)2 = Z(O2(M2)) are elementary abelian groups of order 23, (M1, M2)1 = O2(M1) and (M2, M1)1 = O2(M2) are special groups of order 29, the group M1/O2(M1) is isomorphic to L3(2) × ℤ3or L3(2) × S3, respectively, and M1M2is a Sylow 2-subgroup of M1

(b) r ≤ 5, the group G/L either contains Outdiag(L) or is isomorphic to the group4, (M1, M2)2 = Z(O2(M1L)) and (M2, M1)2 = Z(O2(M2L)) are elementary abelian groups of order 22, (M1, M2)1 = [O2(M1L), O2(M1L)] and (M2, M1)1 = [O2 (M2L), O2(M2L)] are elementary abelian groups of order 25, O2(M1L)/[O2(M1L), O2(M1L)] is an elementary abelian group of order 26, the group (M1L)/O2(M1L) is isomorphic to the group S3, ∣M1: M1M2∣ = 24, ∣M1M2L∣ = 211, and an element of order 3 from M1M2 (for G/LA4or G/LS4) induces on the group L its standard graph automorphism.

In any of cases (a) and (b), the triples (G, M1, M2) exist and form one equivalence class.

Об авторах

A. Kondrat’ev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Автор, ответственный за переписку.
Email: A.S.Kondratiev@imm.uran.ru
Россия, Yekaterinburg, 620108; Yekaterinburg, 620000

V. Trofimov

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Автор, ответственный за переписку.
Email: trofimov@imm.uran.ru
Россия, Yekaterinburg, 620108; Yekaterinburg, 620000

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».