Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration
- Autores: Kaledin D.B.1,2, Konovalov A.A.2, Magidson K.O.2
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences
- National Research University Higher School of Economics
- Edição: Volume 307, Nº 1 (2019)
- Páginas: 51-64
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175936
- DOI: https://doi.org/10.1134/S0081543819060038
- ID: 175936
Citar
Resumo
We revisit the non-commutative Hodge-to-de Rham degeneration theorem of the first author and present its proof in a somewhat streamlined and improved form that explicitly uses spectral algebraic geometry. We also try to explain why topology is essential to the proof.
Sobre autores
D. Kaledin
Steklov Mathematical Institute of Russian Academy of Sciences; National Research University Higher School of Economics
Autor responsável pela correspondência
Email: kaledin@mi-ras.ru
Rússia, ul. Gubkina 8, Moscow, 119991; ul. Myasnitskaya 20, Moscow, 101000
A. Konovalov
National Research University Higher School of Economics
Autor responsável pela correspondência
Email: kon_an_litsey@list.ru
Rússia, ul. Myasnitskaya 20, Moscow, 101000
K. Magidson
National Research University Higher School of Economics
Autor responsável pela correspondência
Email: kirill.salmi94@gmail.com
Rússia, ul. Myasnitskaya 20, Moscow, 101000
Arquivos suplementares
