Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration
- Авторы: Kaledin D.B.1,2, Konovalov A.A.2, Magidson K.O.2
-
Учреждения:
- Steklov Mathematical Institute of Russian Academy of Sciences
- National Research University Higher School of Economics
- Выпуск: Том 307, № 1 (2019)
- Страницы: 51-64
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175936
- DOI: https://doi.org/10.1134/S0081543819060038
- ID: 175936
Цитировать
Аннотация
We revisit the non-commutative Hodge-to-de Rham degeneration theorem of the first author and present its proof in a somewhat streamlined and improved form that explicitly uses spectral algebraic geometry. We also try to explain why topology is essential to the proof.
Об авторах
D. Kaledin
Steklov Mathematical Institute of Russian Academy of Sciences; National Research University Higher School of Economics
Автор, ответственный за переписку.
Email: kaledin@mi-ras.ru
Россия, ul. Gubkina 8, Moscow, 119991; ul. Myasnitskaya 20, Moscow, 101000
A. Konovalov
National Research University Higher School of Economics
Автор, ответственный за переписку.
Email: kon_an_litsey@list.ru
Россия, ul. Myasnitskaya 20, Moscow, 101000
K. Magidson
National Research University Higher School of Economics
Автор, ответственный за переписку.
Email: kirill.salmi94@gmail.com
Россия, ul. Myasnitskaya 20, Moscow, 101000
Дополнительные файлы
