Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We construct a theory of periodic and quasiperiodic functional continued fractions in the field k((h)) for a linear polynomial h and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and S-units for appropriate sets S. We prove the periodicity of quasiperiodic elements of the form \(\sqrt f /d{h^s}\), where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element \(\sqrt f \) is periodic. We also analyze the continued fraction expansion of the key element \(\sqrt f /{h^{g + 1}}\), which defines the set of quasiperiodic elements of a hyperelliptic field.

Sobre autores

V. Platonov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: platonov@niisi.ras.ru
Rússia, Nakhimovskii pr. 36, korp. 1, Moscow, 117218

M. Petrunin

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: platonov@niisi.ras.ru
Rússia, Nakhimovskii pr. 36, korp. 1, Moscow, 117218

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018