Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We construct a theory of periodic and quasiperiodic functional continued fractions in the field k((h)) for a linear polynomial h and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and S-units for appropriate sets S. We prove the periodicity of quasiperiodic elements of the form \(\sqrt f /d{h^s}\), where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element \(\sqrt f \) is periodic. We also analyze the continued fraction expansion of the key element \(\sqrt f /{h^{g + 1}}\), which defines the set of quasiperiodic elements of a hyperelliptic field.

Авторлар туралы

V. Platonov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: platonov@niisi.ras.ru
Ресей, Nakhimovskii pr. 36, korp. 1, Moscow, 117218

M. Petrunin

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: platonov@niisi.ras.ru
Ресей, Nakhimovskii pr. 36, korp. 1, Moscow, 117218

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018