Characterization of Optimal Trajectories in ℝ3


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We characterize the set of all trajectories \(\mathcal{T}\) of an object t moving in a given corridor Y that are furthest away from a family \(\mathbb{ S} =\{ S\} \) of fixed unfriendly observers. Each observer is equipped with a convex open scanning cone K(S) with vertex S. There are constraints on the multiplicity of covering the corridor Y by the cones K and on the “thickness” of the cones. In addition, pairs S, S′ for which [S, S′] ⊂ (K(S) ∩ K(S′)) are not allowed. The original problem \(\max\nolimits _{\mathcal{T}} \min \{d(t, S): t \in \mathcal{T}, S \in \mathbb{S}\}\), where d(t, S) = ∥tS∥ for tK(S) and d(t,S) = +∞ for tK(S), is reduced to the problem of finding an optimal route in a directed graph whose vertices are closed disjoint subsets (boxes) from \(Y\backslash { \cup _S}K\left( S \right)\). Neighboring (adjacent) boxes are separated by some cone K(S). An edge is a part \({\cal T}\left( S \right)\) of a trajectory \({\cal T}\) that connects neighboring boxes and optimally intersects the cone K(S). The weight of an edge is the deviation of S from \({\cal T}\left( S \right)\). A route is optimal if it maximizes the minimum weight.

Негізгі сөздер

Авторлар туралы

V. Berdyshev

Krasovskii Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: bvi@imm.uran.ru
Ресей, Yekaterinburg, 620990

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019