Duality and Correction of Inconsistent Constraints for Improper Linear Programming Problems
- Авторы: Popov L.D.1,2, Skarin V.D.1,2
-
Учреждения:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Выпуск: Том 299, № Suppl 1 (2017)
- Страницы: 165-176
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175310
- DOI: https://doi.org/10.1134/S008154381709019X
- ID: 175310
Цитировать
Аннотация
We continue the study of approximation properties of alternative duality schemes for improper problems of linear programming. The schemes are based on the use of the classical Lagrange function regularized simultaneously in primal and dual variables. The earlier results on the connection of its saddle points with the lexicographic correction of the right-hand sides of constraints in improper problems of the first and second kind are transferred to a more general type of improperness. Convergence theorems are presented and an informal interpretation of the obtained generalized solution is given.
Об авторах
L. Popov
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Автор, ответственный за переписку.
Email: popld@imm.uran.ru
Россия, Yekaterinburg, 620990; Yekaterinburg, 620000
V. Skarin
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Email: popld@imm.uran.ru
Россия, Yekaterinburg, 620990; Yekaterinburg, 620000
Дополнительные файлы
