An exact algorithm with linear complexity for a problem of visiting megalopolises
- Авторы: Chentsov A.G.1,2, Khachai M.Y.1,2, Khachai D.M.1,2
-
Учреждения:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Выпуск: Том 295, № Suppl 1 (2016)
- Страницы: 38-46
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174033
- DOI: https://doi.org/10.1134/S0081543816090054
- ID: 174033
Цитировать
Аннотация
A problem of visiting megalopolises with a fixed number of “entrances” and precedence relations defined in a special way is studied. The problem is a natural generalization of the classical traveling salesman problem. For finding an optimal solution, we give a dynamic programming scheme, which is equivalent to a method of finding a shortest path in an appropriate acyclic oriented weighted graph. We justify conditions under which the complexity of the algorithm depends on the number of megalopolises polynomially, in particular, linearly.
Ключевые слова
Об авторах
A. Chentsov
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Автор, ответственный за переписку.
Email: chentsov@imm.uran.ru
Россия, Yekaterinburg, 620990; Yekaterinburg, 620002
M. Khachai
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Email: chentsov@imm.uran.ru
Россия, Yekaterinburg, 620990; Yekaterinburg, 620002
D. Khachai
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Email: chentsov@imm.uran.ru
Россия, Yekaterinburg, 620990; Yekaterinburg, 620002
Дополнительные файлы
