Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of an optimal cover of sets in three-dimensional Euclidian space by the union of a fixed number of equal balls, where the optimality criterion is the radius of the balls, is studied. Analytical and numerical algorithms based on the division of a set into Dirichlet domains and finding their Chebyshev centers are suggested for this problem. Stochastic iterative procedures are used. Bounds for the asymptotics of the radii of the balls as their number tends to infinity are obtained. The simulation of several examples is performed and their visualization is presented.

Sobre autores

V. Ushakov

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Autor responsável pela correspondência
Email: ushak@imm.uran.ru
Rússia, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 32, Yekaterinburg, 620002

P. Lebedev

Krasovskii Institute of Mathematics and Mechanics

Email: ushak@imm.uran.ru
Rússia, ul. S. Kovalevskoi 16, Yekaterinburg, 620990

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016