Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space
- Авторы: Ushakov V.N.1,2, Lebedev P.D.1
-
Учреждения:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Выпуск: Том 293, № Suppl 1 (2016)
- Страницы: 225-237
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173626
- DOI: https://doi.org/10.1134/S0081543816050205
- ID: 173626
Цитировать
Аннотация
The problem of an optimal cover of sets in three-dimensional Euclidian space by the union of a fixed number of equal balls, where the optimality criterion is the radius of the balls, is studied. Analytical and numerical algorithms based on the division of a set into Dirichlet domains and finding their Chebyshev centers are suggested for this problem. Stochastic iterative procedures are used. Bounds for the asymptotics of the radii of the balls as their number tends to infinity are obtained. The simulation of several examples is performed and their visualization is presented.
Ключевые слова
Об авторах
V. Ushakov
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Автор, ответственный за переписку.
Email: ushak@imm.uran.ru
Россия, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 32, Yekaterinburg, 620002
P. Lebedev
Krasovskii Institute of Mathematics and Mechanics
Email: ushak@imm.uran.ru
Россия, ul. S. Kovalevskoi 16, Yekaterinburg, 620990
Дополнительные файлы
