Construction of a maximal stable bridge in games with simple motions on the plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that the solvability set (the maximal stable bridge) in a zero-sum differential game with simple motions, fixed terminal time, geometric constraints on the controls of the first and second players, and convex terminal set can be constructed by means of a program absorption operator. In this case, a backward procedure for the construction of t-sections of the solvability set does not need any additional partition times. We establish the same property for a game with simple motions, polygonal terminal set (which is generally nonconvex), and polygonal constraints on the players’ controls on the plane. In the particular case of a convex terminal set, the operator used in the paper coincides with the program absorption operator.

作者简介

L. Kamneva

Institute of Mathematics and Mechanics; Ural Federal University

编辑信件的主要联系方式.
Email: kamneva@imm.uran.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 19, Yekaterinburg, 620002

V. Patsko

Institute of Mathematics and Mechanics; Ural Federal University

Email: kamneva@imm.uran.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Yekaterinburg, 620990; ul. Mira 19, Yekaterinburg, 620002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016