An Algorithm for the Polyhedral Cycle Cover Problem with Constraints on the Number and Length of Cycles


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A cycle cover of a graph is a spanning subgraph whose connected components are simple cycles. Given a complete weighted directed graph, consider the intractable problem of finding a maximum-weight cycle cover which satisfies an upper bound on the number of cycles and a lower bound on the number of edges in each cycle. We suggest a polynomial-time algorithm for solving this problem in the geometric case where the vertices of the graph are points in a multidimensional real space and the distances between them are induced by a positively homogeneous function whose unit ball is an arbitrary convex polytope with a fixed number of facets. The obtained result extends the ideas underlying the well-known algorithm for the polyhedral Max TSP.

Авторлар туралы

V. Shenmaier

Sobolev Institute of Mathematics

Хат алмасуға жауапты Автор.
Email: shenmaier@mail.ru
Ресей, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019