An Approximation Algorithm for a Problem of Partitioning a Sequence into Clusters with Constraints on Their Cardinalities


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the problem of partitioning a finite sequence of points in Euclidean space into a given number of clusters (subsequences) minimizing the sum over all clusters of intracluster sums of squared distances of elements of the clusters to their centers. It is assumed that the center of one of the desired clusters is the origin, while the centers of the other clusters are unknown and are defined as the mean values of cluster elements. Additionally, there are a few structural constraints on the elements of the sequence that enter the clusters with unknown centers: (1) the concatenation of indices of elements of these clusters is an increasing sequence, (2) the difference between two consequent indices is lower and upper bounded by prescribed constants, and (3) the total number of elements in these clusters is given as an input. It is shown that the problem is strongly NP-hard. A 2-approximation algorithm that is polynomial for a fixed number of clusters is proposed for this problem.

Авторлар туралы

A. Kel’manov

Sobolev Institute of Mathematics; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

L. Mikhailova

Sobolev Institute of Mathematics

Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090

S. Khamidullin

Sobolev Institute of Mathematics

Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090

V. Khandeev

Sobolev Institute of Mathematics; Novosibirsk State University

Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017