On a Diophantine Inequality with Prime Numbers of a Special Type


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Diophantine inequality |p1c + p2c + p3cN| < (logN)E, where 1 < c < 15/14, N is a sufficiently large real number and E > 0 is an arbitrarily large constant. We prove that the above inequality has a solution in primes p1, p2, p3 such that each of the numbers p1 + 2, p2 + 2 and p3 + 2 has at most [369/(180 − 168c)] prime factors, counted with multiplicity.

作者简介

D. Tolev

Faculty of Mathematics and Informatics

编辑信件的主要联系方式.
Email: dtolev@fmi.uni-sofia.bg
保加利亚, 5 J. Bourchier blvd., Sofia, 1164

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017