Integration over the Space of Functions and Poincaré Series Revisited


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Earlier (2000) the authors introduced the notion of the integral with respect to the Euler characteristic over the space of germs of functions on a variety and over its projectivization. This notion allowed the authors to rewrite known definitions and statements in new terms and also turned out to be an effective tool for computing the Poincar´e series of multi-index filtrations in some situations. However, the “classical” (initial) notion can be applied only to multi-index filtrations defined by so-called finitely determined valuations (or order functions). Here we introduce a modified version of the notion of the integral with respect to the Euler characteristic over the projectivization of the space of function germs. This version can be applied in a number of settings where the “classical approach” does not work. We give examples of the application of this concept to definitions and computations of the Poincar´e series (including equivariant ones) of collections of plane valuations which contain valuations not centred at the origin.

作者简介

S. Gusein-Zade

Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: sabir@mccme.ru
俄罗斯联邦, Moscow, 119991

F. Delgado

IMUVA (Instituto de Investigación en Matemáticas)

Email: sabir@mccme.ru
西班牙, Paseo de Belén, Valladolid, 7, 47011

A. Campillo

IMUVA (Instituto de Investigación en Matemáticas)

Email: sabir@mccme.ru
西班牙, Paseo de Belén, Valladolid, 7, 47011

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018