Generalized Kloosterman sum with primes
- 作者: Korolev M.A.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 296, 编号 1 (2017)
- 页面: 154-171
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174233
- DOI: https://doi.org/10.1134/S0081543817010138
- ID: 174233
如何引用文章
详细
The work is devoted to generalized Kloosterman sums modulo a prime, i.e., trigonometric sums of the form \(\sum\nolimits_{p \leqslant x} {\exp \left\{ {2\pi i\left( {a\bar p + {F_k}\left( p \right)} \right)/q} \right\}} \) and \(\sum\nolimits_{n \leqslant x} {\mu \left( n \right)\exp \left\{ {2\pi i\left( {a\bar n + {F_k}\left( n \right)} \right)/q} \right\}} \), where q is a prime number, \(\left( {a,q} \right) = 1,m\bar m \equiv 1\left( {\bmod {\kern 1pt} q} \right)\), Fk(u) is a polynomial of degree k ≥ 2 with integer coefficients, and p runs over prime numbers. An upper estimate with a power saving is obtained for the absolute values of such sums for x ≥ q1/2+ε.
作者简介
M. Korolev
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: korolevma@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
补充文件
