Generalized Kloosterman sum with primes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to generalized Kloosterman sums modulo a prime, i.e., trigonometric sums of the form \(\sum\nolimits_{p \leqslant x} {\exp \left\{ {2\pi i\left( {a\bar p + {F_k}\left( p \right)} \right)/q} \right\}} \) and \(\sum\nolimits_{n \leqslant x} {\mu \left( n \right)\exp \left\{ {2\pi i\left( {a\bar n + {F_k}\left( n \right)} \right)/q} \right\}} \), where q is a prime number, \(\left( {a,q} \right) = 1,m\bar m \equiv 1\left( {\bmod {\kern 1pt} q} \right)\), Fk(u) is a polynomial of degree k ≥ 2 with integer coefficients, and p runs over prime numbers. An upper estimate with a power saving is obtained for the absolute values of such sums for x ≥ q1/2+ε.

About the authors

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: korolevma@mi.ras.ru
Russian Federation, ul. Gubkina 8, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.