Birationally Rigid Finite Covers of the Projective Space
- Autores: Pukhlikov A.V.1
-
Afiliações:
- Department of Mathematical Sciences
- Edição: Volume 307, Nº 1 (2019)
- Páginas: 232-244
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175953
- DOI: https://doi.org/10.1134/S0081543819060142
- ID: 175953
Citar
Resumo
In this paper we prove birational superrigidity of finite covers of degree d of the M-dimensional projective space of index 1, where d ≥ 5 and M ≥ 10, that have at most quadratic singularities of rank ≥ 7 and satisfy certain regularity conditions. Up to now, only cyclic covers have been studied in this respect. The set of varieties that have worse singularities or do not satisfy the regularity conditions is of codimension ≥ (M − 4)(M − 5)/2 + 1 in the natural parameter space of the family.
Sobre autores
A. Pukhlikov
Department of Mathematical Sciences
Autor responsável pela correspondência
Email: pukh@liverpool.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Liverpool, L69 7ZL
Arquivos suplementares
