On the Relation of Symplectic Algebraic Cobordism to Hermitian K-Theory


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We reconstruct hermitian K-theory via algebraic symplectic cobordism. In the motivic stable homotopy category SH(S), there is a unique morphism ϕ: MSpBO of commutative ring T-spectra which sends the Thom class thMSp to the Thom class thBO. Using ϕ we construct an isomorphism of bigraded ring cohomology theories on the category \({\mathop{\rm Sm}\nolimits} {\mathcal O}p/S,\bar \varphi :{{\mathop{\rm MSp}\nolimits} ^{*,*}}(X,U){ \otimes _{{\rm{MS}}{{\rm{p}}^{4*,0*}}({\rm{pt}})}}{\rm{B}}{{\rm{O}}^{4*,2*}}({\rm{pt}}) \cong {\rm{B}}{{\rm{O}}^{*,*}}(X,U)\). The result is an algebraic version of the theorem of Conner and Floyd reconstructing real K-theory using symplectic cobordism. Rewriting the bigrading as MSpp,q = MSp1q−p[q], we have an isomorphism \(\bar \varphi :{{\mathop{\rm MSp}\nolimits} _*}^{[*]}(X,U){ \otimes _{{\rm{MSp}}_0^{[2*]}({\rm{pt}})}}{\rm{KO}}_0^{[2*]}({\rm{pt}}) \cong {\rm{K}}{{\rm{O}}_*}^{[*]}(X,U)\), where the KOi[n](X,U) are Schlichting’s hermitian K-theory groups.

About the authors

I. A. Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: paniniv@gmail.com
Russian Federation, nab. Fontanki 27, St. Petersburg, 191023

C. Walter

Laboratoire J.-A. Dieudonné (UMR 7351 du CNRS), Département de mathématiques

Author for correspondence.
Email: walter@math.unice.fr
France, Parc Valrose, Nice Cedex 02, 06108

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.