Geometry of Central Extensions of Nilpotent Lie Algebras
- Авторлар: Millionshchikov D.V.1, Jimenez R.2
-
Мекемелер:
- Faculty of Mechanics and Mathematics
- National Autonomous University of Mexico
- Шығарылым: Том 305, № 1 (2019)
- Беттер: 209-231
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175816
- DOI: https://doi.org/10.1134/S008154381903012X
- ID: 175816
Дәйексөз келтіру
Аннотация
We obtain a recurrent and monotone method for constructing and classifying nilpotent Lie algebras by means of successive central extensions. The method consists in calculating the second cohomology \(H^{2}(\mathfrak{g}, \mathbb{K})\) of an extendable nilpotent Lie algebra \(\mathfrak{g}\) followed by studying the geometry of the orbit space of the action of the automorphism group Aut(\(\mathfrak{g}\)) on Grassmannians of the form \(\operatorname{Gr}\left(m, H^{2}(\mathfrak{g}, \mathbb{K})\right)\). In this case, it is necessary to take into account the filtered cohomology structure with respect to the ideals of the lower central series: a cocycle defining a central extension must have maximum filtration. Such a geometric method allows us to classify nilpotent Lie algebras of small dimensions, as well as to classify narrow naturally graded Lie algebras. We introduce the concept of a rigid central extension and construct examples of rigid and nonrigid central extensions.
Авторлар туралы
D. Millionshchikov
Faculty of Mechanics and Mathematics
Хат алмасуға жауапты Автор.
Email: mitia_m@hotmail.com
Ресей, Moscow, 119991
R. Jimenez
National Autonomous University of Mexico
Хат алмасуға жауапты Автор.
Email: landojb1960@gmail.com
Мексика, Mexico City, 04510
Қосымша файлдар
