On Addition Theorems Related to Elliptic Integrals


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present formulas for the components of the Buchstaber formal group law and its exponent over ℚ[p1, p2, p3, p4]. This leads to an addition theorem for the general elliptic integral \(\int_0^x {dt{\rm{/}}R\left( t \right)} \) with \(R(t)=\sqrt{1+p_{1} t+p_{2} t^{2}+p_{3} t^{3}+p_{4} t^{4}}\). The study is motivated by Euler’s addition theorem for elliptic integrals of the first kind.

About the authors

Malkhaz Bakuradze

Faculty of Exact and Natural Sciences

Author for correspondence.
Email: malkhaz.bakuradze@tsu.ge
Georgia, Chavchavadze Ave. 1, Tbilisi, 0179

Vladimir V. Vershinin

Institut Montpelliérain Alexander Grothendieck; Sobolev Institute of Mathematics

Author for correspondence.
Email: vladimir.verchinine@umontpellier.fr
France, Case courrier 051, Place Eugène Bataillon, Montpellier, 34090; pr. Akademika Koptyuga 4, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.