On Addition Theorems Related to Elliptic Integrals


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present formulas for the components of the Buchstaber formal group law and its exponent over ℚ[p1, p2, p3, p4]. This leads to an addition theorem for the general elliptic integral \(\int_0^x {dt{\rm{/}}R\left( t \right)} \) with \(R(t)=\sqrt{1+p_{1} t+p_{2} t^{2}+p_{3} t^{3}+p_{4} t^{4}}\). The study is motivated by Euler’s addition theorem for elliptic integrals of the first kind.

作者简介

Malkhaz Bakuradze

Faculty of Exact and Natural Sciences

编辑信件的主要联系方式.
Email: malkhaz.bakuradze@tsu.ge
格鲁吉亚, Chavchavadze Ave. 1, Tbilisi, 0179

Vladimir Vershinin

Institut Montpelliérain Alexander Grothendieck; Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: vladimir.verchinine@umontpellier.fr
法国, Case courrier 051, Place Eugène Bataillon, Montpellier, 34090; pr. Akademika Koptyuga 4, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019