The Set of Target Vectors in a Semi-Infinite Linear Program with a Duality Gap
- Authors: Astaf’ev N.N.1, Ivanov A.V.2, Trofimov S.P.2
-
Affiliations:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Issue: Vol 304, No Suppl 1 (2019)
- Pages: S14-S22
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175764
- DOI: https://doi.org/10.1134/S0081543819020032
- ID: 175764
Cite item
Abstract
We propose a geometric method for the analysis of duality relations in a pair of semi-infinite linear programs (SILPs). The method is based on the use of the conic hull of the coefficients in the constraint system. A relation between the presence of a duality gap and the nonclosedness of the boundary of the conic hull of points in a multidimensional space is established. The geometric approach is used to construct an opposite pair of dual problems and to explore the duality relations for this pair. We construct a nontrivial example of a SILP in which the duality gap occurs for noncollinear target vectors.
About the authors
N. N. Astaf’ev
Krasovskii Institute of Mathematics and Mechanics
Author for correspondence.
Email: astnn@imm.uran.ru
Russian Federation, Yekaterinburg, 620990
A. V. Ivanov
Ural Federal University
Author for correspondence.
Email: av.ivanov.2014@yandex.ru
Russian Federation, Yekaterinburg, 620000
S. P. Trofimov
Ural Federal University
Author for correspondence.
Email: tsp61@mail.ru
Russian Federation, Yekaterinburg, 620000
Supplementary files
