An Optimal Algorithm for an Outerplanar Facility Location Problem with Improved Time Complexity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a network facility location problem with unbounded production levels. This problem is NP-hard in the general case and is known to have an optimal solution with quadratic complexity on a tree network. We study the case of a network representable by an outerplanar graph, i.e., by a graph whose vertices belong to one (outer) face. This problem is known to have an optimal algorithm with time complexity O(nm3), where n is the number of vertices and m is the number of possible facility locations. Using some properties of outerplanar graphs (binary 2-trees) and the existence of an optimal solution with a family of centrally connected service areas, we obtain recurrence relations for the construction of an optimal algorithm with time complexity that is smaller by a factor of \(\sqrt m \) than the time complexity of the earlier algorithm.

About the authors

E. Kh. Gimadi

Sobolev Institute of Mathematics

Author for correspondence.
Email: gimadi@math.nsc.ru
Russian Federation, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.