Uniformly Convergent Fourier Series and Multiplication of Functions
- 作者: Lebedev V.V.1
-
隶属关系:
- National Research University Higher School of Economics
- 期: 卷 303, 编号 1 (2018)
- 页面: 171-177
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175671
- DOI: https://doi.org/10.1134/S008154381808014X
- ID: 175671
如何引用文章
详细
Let \(U(\mathbb{T})\) be the space of all continuous functions on the circle \(\mathbb{T}\) whose Fourier series converges uniformly. Salem’s well-known example shows that a product of two functions in \(U(\mathbb{T})\) does not always belong to \(U(\mathbb{T})\) even if one of the factors belongs to the Wiener algebra \(A(\mathbb{T})\). In this paper we consider pointwise multipliers of the space \(U(\mathbb{T})\), i.e., the functions m such that mf ∈ \(U(\mathbb{T})\) whenever f ∈ \(U(\mathbb{T})\). We present certain sufficient conditions for a function to be a multiplier and also obtain some Salem-type results.
作者简介
V. Lebedev
National Research University Higher School of Economics
编辑信件的主要联系方式.
Email: lebedevhome@gmail.com
俄罗斯联邦, ul. Tallinskaya 34, Moscow, 123458
补充文件
