Computational Complexity of the Vertex Cover Problem in the Class of Planar Triangulations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the computational complexity of the vertex cover problem in the class of planar graphs (planar triangulations) admitting a plane representation whose faces are triangles. It is shown that the problem is strongly NP-hard in the class of 4-connected planar triangulations in which the degrees of vertices are of order O(log n), where n is the number of vertices, and in the class of plane 4-connected Delaunay triangulations based on the Minkowski triangular distance. A pair of vertices in such a triangulation is adjacent if and only if there is an equilateral triangle ∇(p, λ) with pR2 and λ > 0 whose interior does not contain triangulation vertices and whose boundary contains this pair of vertices and only it, where ∇(p, λ) = p + λ∇ = {xR2: x = p + λa, a ∈ ∇}; here ∇ is the equilateral triangle with unit sides such that its barycenter is the origin and one of the vertices belongs to the negative y-axis. Keywords: computational complexity, Delaunay triangulation, Delaunay TD-triangulation.

作者简介

K. Kobylkin

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

编辑信件的主要联系方式.
Email: kobylkinks@gmail.com
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017