Discrete Universality in the Selberg Class
- 作者: Laurinčikas A.1, Macaitienė R.2,3
-
隶属关系:
- Faculty of Mathematics and Informatics
- Šiauliai University
- Šiauliai State College
- 期: 卷 299, 编号 1 (2017)
- 页面: 143-156
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175147
- DOI: https://doi.org/10.1134/S0081543817080107
- ID: 175147
如何引用文章
详细
The Selberg class S consists of functions L(s) that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in S that satisfy the mean value condition on primes are universal in the sense of Voronin, i.e., every function in a sufficiently wide class of analytic functions can be approximated by the shifts L(s + iτ ), τ ∈ R. In this paper we show that every function in the same class of analytic functions can be approximated by the discrete shifts L(s + ikh), k = 0, 1,..., where h > 0 is an arbitrary fixed number.
作者简介
A. Laurinčikas
Faculty of Mathematics and Informatics
编辑信件的主要联系方式.
Email: antanas.laurincikas@mif.vu.lt
立陶宛, Naugarduko st. 24, Vilnius, LT-03225
R. Macaitienė
Šiauliai University; Šiauliai State College
Email: antanas.laurincikas@mif.vu.lt
立陶宛, Vilnius str. 88, Šiauliai, 76285; Aušros av. 40, Šiauliai, 76241
补充文件
