Discrete Universality in the Selberg Class


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Selberg class S consists of functions L(s) that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in S that satisfy the mean value condition on primes are universal in the sense of Voronin, i.e., every function in a sufficiently wide class of analytic functions can be approximated by the shifts L(s + ), τ ∈ R. In this paper we show that every function in the same class of analytic functions can be approximated by the discrete shifts L(s + ikh), k = 0, 1,..., where h > 0 is an arbitrary fixed number.

作者简介

A. Laurinčikas

Faculty of Mathematics and Informatics

编辑信件的主要联系方式.
Email: antanas.laurincikas@mif.vu.lt
立陶宛, Naugarduko st. 24, Vilnius, LT-03225

R. Macaitienė

Šiauliai University; Šiauliai State College

Email: antanas.laurincikas@mif.vu.lt
立陶宛, Vilnius str. 88, Šiauliai, 76285; Aušros av. 40, Šiauliai, 76241

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017