Symmetry and Short Interval Mean-Squares
- Authors: Coppola G.1,2, Laporta M.2
-
Affiliations:
- University of Salerno
- Dipartimento di Matematica e Applicazioni “R. Caccioppoli,”
- Issue: Vol 299, No 1 (2017)
- Pages: 56-77
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175115
- DOI: https://doi.org/10.1134/S0081543817080041
- ID: 175115
Cite item
Abstract
The weighted Selberg integral is a discrete mean-square that generalizes the classical Selberg integral of primes to an arithmetic function f, whose values in a short interval are suitably attached to a weight function. We give conditions on f and select a particular class of weights in order to investigate non-trivial bounds of weighted Selberg integrals of both f and f * μ. In particular, we discuss the cases of the symmetry integral and the modified Selberg integral, the latter involving the Cesaro weight. We also prove some side results when f is a divisor function.
About the authors
Giovanni Coppola
University of Salerno; Dipartimento di Matematica e Applicazioni “R. Caccioppoli,”
Author for correspondence.
Email: giocop@interfree.it
Italy, Via Giovanni Paolo II, Fisciano (SA), 132 - 84084; Via Cintia, Napoli, 80126
Maurizio Laporta
Dipartimento di Matematica e Applicazioni “R. Caccioppoli,”
Email: giocop@interfree.it
Italy, Via Cintia, Napoli, 80126
Supplementary files
