Compactification of the space of branched coverings of the two-dimensional sphere


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a closed oriented surface Σ we define its degenerations into singular surfaces that are locally homeomorphic to wedges of disks. Let XΣ,n be the set of isomorphism classes of orientation-preserving n-fold branched coverings Σ → S2 of the two-dimensional sphere. We complete XΣ,n with the isomorphism classes of mappings that cover the sphere by the degenerations of Σ. In the case Σ = S2, the topology that we define on the obtained completion \({\overline X _{\Sigma ,n}}\) coincides on \({X_{{s^2},n}}\) with the topology induced by the space of coefficients of rational functions P/Q, where P and Q are homogeneous polynomials of degree n on ℂP1S2. We prove that \({\overline X _{\Sigma ,n}}\) coincides with the Diaz–Edidin–Natanzon–Turaev compactification of the Hurwitz space H(Σ, n) ⊂ XΣ,n consisting of isomorphism classes of branched coverings with all critical values being simple.

作者简介

V. Zvonilov

Chukotka Branch of the North-Eastern Federal University

编辑信件的主要联系方式.
Email: zvonilov@gmail.com
俄罗斯联邦, Studencheskaya ul. 3, Anadyr, Chukotka, 689000

S. Orevkov

Steklov Mathematical Institute of Russian Academy of Sciences; Institut de Mathématiques de Toulouse; National Research University “Higher School of Economics,”

Email: zvonilov@gmail.com
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991; 118 route de Narbonne, Toulouse Cedex 9, F-31062; ul. Myasnitskaya 20, Moscow, 101000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017