A discrete version of the Mishou theorem. II


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In 2007, H. Mishou obtained a joint universality theorem for the Riemann zetafunction ζ(s) and the Hurwitz zeta-function ζ(s, α) with transcendental parameter α. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts ζ(s + iτ ) and ζ(s + iτ, α), τ ∈ R. In 2015, E. Buivydas and the author established a version of this theorem in which the approximation is performed by the discrete shifts ζ(s + ikh) and ζ(s + ikh, α), h > 0, k = 0, 1, 2.... In the present study, we prove joint universality for the functions ζ(s) and ζ(s, α) in the sense of approximation of a pair of analytic functions by the shifts ζ(s + ikβh) and ζ(s + ikβh, α) with fixed 0 < β < 1.

Sobre autores

A. Laurinčikas

Faculty of Mathematics and Informatics

Autor responsável pela correspondência
Email: antanas.laurincikas@mif.vu.lt
Lituânia, Naugarduko st. 24, Vilnius, LT-03225

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017