Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters
- 作者: Dolgushev A.V.1, Kel’manov A.V.1,2, Shenmaier V.V.2
-
隶属关系:
- Novosibirsk State University
- Sobolev Institute of Mathematics
- 期: 卷 295, 编号 Suppl 1 (2016)
- 页面: 47-56
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174035
- DOI: https://doi.org/10.1134/S0081543816090066
- ID: 174035
如何引用文章
详细
We consider the strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters of given cardinalities under the minimum criterion for the sum over the clusters of the intracluster sums of squared distances from elements of the cluster to its center. It is assumed that the center of one of the clusters is given (without loss of generality, at the origin). The center of the second cluster is unknown and is defined as the mean value over all elements in this cluster. A polynomial-time approximation scheme (PTAS) is provided.
作者简介
A. Dolgushev
Novosibirsk State University
编辑信件的主要联系方式.
Email: dolgushev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
A. Kel’manov
Novosibirsk State University; Sobolev Institute of Mathematics
Email: dolgushev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
V. Shenmaier
Sobolev Institute of Mathematics
Email: dolgushev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
补充文件
