Relative widths of Sobolev classes in the uniform and integral metrics


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let Wpr be the Sobolev class consisting of 2π-periodic functions f such that ‖f(r)p ≤ 1. We consider the relative widths dn(Wpr, MWpr, Lp), which characterize the best approximation of the class Wpr in the space Lp by linear subspaces for which (in contrast to Kolmogorov widths) it is additionally required that the approximating functions g should lie in MWpr, i.e., ‖g(r)pM. We establish estimates for the relative widths in the cases of p = 1 and p = ∞; it follows from these estimates that for almost optimal (with error at most Cnr, where C is an absolute constant) approximations of the class Wpr by linear 2n-dimensional spaces, the norms of the rth derivatives of some approximating functions are not less than cln min(n, r) for large n and r.

About the authors

Yu. V. Malykhin

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: malykhin@mi.ras.ru
Russian Federation, ul. Gubkina 8, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.