Algebras of general type: Rational parametrization and normal forms


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For every algebraically closed field k of characteristic different from 2, we prove the following: (1) Finite-dimensional (not necessarily associative) k-algebras of general type of a fixed dimension, considered up to isomorphism, are parametrized by the values of a tuple of algebraically independent (over k) rational functions of the structure constants. (2) There exists an “algebraic normal form” to which the set of structure constants of every such algebra can be uniquely transformed by means of passing to its new basis—namely, there are two finite systems of nonconstant polynomials on the space of structure constants, {fi}i∈I and {bj}j∈J, such that the ideal generated by the set {fi}i∈I is prime and, for every tuple c of structure constants satisfying the property bj(c) ≠ 0 for all jJ, there exists a unique new basis of this algebra in which the tuple c′ of its structure constants satisfies the property fi(c′) = 0 for all iI.

About the authors

Vladimir L. Popov

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: popovvl@mi.ras.ru
Russian Federation, ul. Gubkina 8, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.