Frattini and related subgroups of mapping class groups
- Authors: Masbaum G.1, Reid A.W.2
-
Affiliations:
- Institut de Mathématiques de Jussieu–PRG (UMR 7586 du CNRS)
- Department of Mathematics
- Issue: Vol 292, No 1 (2016)
- Pages: 143-152
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173449
- DOI: https://doi.org/10.1134/S0081543816010090
- ID: 173449
Cite item
Abstract
Let Γg,b denote the orientation-preserving mapping class group of a closed orientable surface of genus g with b punctures. For a group G let Φf(G) denote the intersection of all maximal subgroups of finite index in G. Motivated by a question of Ivanov as to whether Φf(G) is nilpotent when G is a finitely generated subgroup of Γg,b, in this paper we compute Φf(G) for certain subgroups of Γg,b. In particular, we answer Ivanov’s question in the affirmative for these subgroups of Γg,b.
About the authors
G. Masbaum
Institut de Mathématiques de Jussieu–PRG (UMR 7586 du CNRS)
Author for correspondence.
Email: gregor.masbaum@imj-prg.fr
France, Case 247, 4 pl. Jussieu, Paris Cedex 5, 75252
A. W. Reid
Department of Mathematics
Email: gregor.masbaum@imj-prg.fr
United States, Austin, TX, 78712
Supplementary files
