Local nilpotency of the McCrimmon radical of a Jordan system
- Authors: Anquela J.A.1, Cortés T.1, Zelmanov E.2
-
Affiliations:
- Departamento de Matemáticas
- Department of Mathematics
- Issue: Vol 292, No 1 (2016)
- Pages: 1-9
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173430
- DOI: https://doi.org/10.1134/S0081543816010016
- ID: 173430
Cite item
Abstract
Using the fact that absolute zero divisors in Jordan pairs become Lie sandwiches of the corresponding Tits–Kantor–Koecher Lie algebras, we prove local nilpotency of the McCrimmon radical of a Jordan system (algebra, triple system, or pair) over an arbitrary ring of scalars. As an application, we show that simple Jordan systems are always nondegenerate.
About the authors
José A. Anquela
Departamento de Matemáticas
Author for correspondence.
Email: anque@orion.ciencias.uniovi.es
Spain, C/ Calvo Sotelo s/n, Oviedo, 33007
Teresa Cortés
Departamento de Matemáticas
Email: anque@orion.ciencias.uniovi.es
Spain, C/ Calvo Sotelo s/n, Oviedo, 33007
Efim Zelmanov
Department of Mathematics
Email: anque@orion.ciencias.uniovi.es
United States, 9500 Gilman Dr., La Jolla, CA, 92093-0112
Supplementary files
