First and second order optimality conditions in vector optimization problems with nontransitive preference relation
- 作者: Gorokhovik V.V.1, Trafimovich M.A.2
-
隶属关系:
- Institute of Mathematics
- Belarusian State University
- 期: 卷 292, 编号 Suppl 1 (2016)
- 页面: 91-105
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173299
- DOI: https://doi.org/10.1134/S0081543816020085
- ID: 173299
如何引用文章
详细
We present first and second order conditions, both necessary and sufficient, for ≺-minimizers of vector-valued mappings over feasible sets with respect to a nontransitive preference relation ≺. Using an analytical representation of a preference relation ≺ in terms of a suitable family of sublinear functions, we reduce the vector optimization problem under study to a scalar inequality, from which, using the tools of variational analysis, we derive minimality conditions for the initial vector optimization problem.
作者简介
V. Gorokhovik
Institute of Mathematics
编辑信件的主要联系方式.
Email: gorokh@im.bas-net.by
白俄罗斯, ul. Surganova 11, Minsk, 220072
M. Trafimovich
Belarusian State University
Email: gorokh@im.bas-net.by
白俄罗斯, pr. Nezavisimosti 4, Minsk, 220030
补充文件
