Изменение сообществ раковинных амеб в ряду водных и наземных биотопов водно-болотных и лесных экосистем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы закономерности изменения видового богатства, обилия, видовой структуры и биомассы раковинных амеб в ряду разнотипных водных и наземных биотопов межозерной трансекты в Тюменской области. Найдено 112 видов и форм раковинных амеб, включая подвиды. Даны микрофотографии всех обнаруженных видов. Впервые для юга Западной Сибири обнаружен вид Conicocassis pontiguasiformis (Beyens et al., 1986) Nasser et Anderson 2015, описанный ранее как арктический эндемик. Видовое богатство сообществ тестацей максимально в перифитоне. Наибольшие значения численности и биомассы видов выявлены в бентосе прибрежной части болотного озера. Сообщества тестацей разнотипных биотопов вдоль трансекты разделяются на водные и наземные на основе результатов кластерного анализа и анализа главных компонент. Видовой состав сообществ раковинных амеб зависит от характера и степени обводненности субстрата, а также типа растительности. Выявлены доминанты по относительной биомассе для водных, лесных и хорошо освещенных сфагновых биотопов.

Об авторах

О. Н. Загумённая

Институт биологии внутренних вод имени И.Д. Папанина РАН; Тюменский государственный университет, Лаборатория AquaBioSafe

Автор, ответственный за переписку.
Email: zagumelga@gmail.com
Россия, 152742, Борок; Россия, 625003, Тюмень

Д. А. Филиппов

Институт биологии внутренних вод имени И.Д. Папанина РАН; Тюменский государственный университет, Лаборатория AquaBioSafe

Email: zagumelga@gmail.com
Россия, 152742, Борок; Россия, 625003, Тюмень

Д. Г. Загумённый

Институт биологии внутренних вод имени И.Д. Папанина РАН; Тюменский государственный университет, Лаборатория AquaBioSafe

Email: zagumelga@gmail.com
Россия, 152742, Борок; Россия, 625003, Тюмень

А. А. Комаров

Пензенский государственный университет, Педагогический институт имени В.Г. Белинского,
Факультет физико-математических и естественных наук

Email: zagumelga@gmail.com
Россия, 440026, Пенза

А. Н. Цыганов

Московский государственный университет имени М.В. Ломоносова,
Биологический факультет; Институт проблем экологии и эволюции имени А.Н. Северцова

Email: zagumelga@gmail.com
Россия, 119234, Москва; Россия, 119071, Москва

Д. В. Тихоненков

Институт биологии внутренних вод имени И.Д. Папанина РАН; Тюменский государственный университет, Лаборатория AquaBioSafe

Email: zagumelga@gmail.com
Россия, 152742, Борок; Россия, 625003, Тюмень

Список литературы

  1. Булатова У.А., 2010. Фауна и экология раковинных амеб (Rhizopoda, Testacea) сосновых лесов Томской и Кемеровской областей // Вестник Томского государственного университета. Биология. Т. 2. Вып. 10. С. 58–67.
  2. Земцов А.А., Мезенцев А.В., Инишева Л.И., 1998. Болота Западной Сибири: их роль в биосфере. Томск: Издательство Томского ЦНТИ. 52 с.
  3. Курьина И.В., Климова Н.В., 2016. Сообщества раковинных амеб (Rhizopoda, Testaceafilosea, Testacealobosea) в болотных местообитаниях после воздействия пожаров (юг Западной Сибири) // Вестник Томского государственного университета. Биология. Вып. 3. № 3.35. С. 161–181.
  4. Мазей Ю.А., Бубнова О.А., Чернышов В.А., 2009. Структура сообщества раковинных амеб (Testacealobosea; Testaceafilosea; Amphitremidae) в Чибирлейском моховом болоте (среднее Поволжье) // Известия Самарского научного центра РАН.ol Т. 11. № 1. С. 72–77.
  5. Мазей Ю.А., Цыганов А.Н., 2006. Пресноводные раковинные амебы. М.: Товарищество научных изданий КМК. 300 с.
  6. Рахлеева А.А. Корганова А.А., 2005. К вопросу об оценке численности и видового разнообразия раковинных амеб (Rhizopoda, Testacea) в таежных почвах // Зоологический журнал. Т. 84. № 12. С. 1427–1436.
  7. Филиппов Д.А., Прокин А.А., Пржиборо А.А., 2017. Методы и методики гидробиологического исследования болот: учебное пособие. Тюмень: Изд-во Тюменского гос. ун-та. 207 с.
  8. Чернышов В.А., Мазей Ю.А., 2010. Сообщества почвообитающих раковинных амеб в биогеоценозах подтаежной зоны Западной Сибири и их изменения вдоль ландшафтных катен // Известия Пензенского государственного педагогического университета им. В.Г. Белинского. № 21. С. 66–73.
  9. Adl S.M., Bass D., Lane C.E., Lukeš J., Schoch C.L., Smirnov A., Agatha S., Berney C., Brown M.W., Burki F., et al., 2019. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes // Journal of Eukaryotic Microbiology. V. 66. № 1. P. 4–119.
  10. Amesbury M.J., Booth R.K., Roland T.P., Bunbury J., Clifford M.J., Charman D.J., et al., 2018. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data // Quaternary Science Reviews. V. 201. P. 483–500.
  11. Beyens L., Bobrov A., 2016. Evidence supporting the concept of a regionalized distribution of testate amoebae in the Arctic // Acta Protozoologica. V. 55. № 4. P. 197–209.
  12. Beyens L., Chardez D., De Landtsheer R., De Baere D., 1986. Testate amoebae communities from aquatic habitats in the Arctic // Polar Biology. V. 6. № 4. P. 197–205.
  13. Bobrov A., Wetterich S., 2012. Testate amoebae of arctic tundra landscapes // Protistology. V. 7. № 1. P. 51–58.
  14. Bobrov A.A., Krasilnikov P.A., 2011. Testate amoebas of pine forests in Mexico // Biology Bulletin. V. 38. № 4. P. 400–405.
  15. Charman D.J., 2001. Biostratigraphic and palaeoenvironmental applications of testate amoebae // Quaternary Science Reviews. V. 20. № 16. P. 1753–1764.
  16. Charman D.J., Blundell A., ACCROTELM members, 2007. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands // Journal of Quaternary Science. V. 22. № 3. P. 209–221.
  17. Diaconu A.C., Grindean R., Panait A., Tanţău I., 2016. Late Holocene palaeohydrological changes in a Sphagnum peat bog from NW Romania based on testate amoebae // Studia UBB Geologia. V. 60. № 1. P. 21–28.
  18. Fenchel T., 2005. Respiration in aquatic protists // Respiration in aquatic ecosystems. del Giorgio P.A., William P. (Eds). Oxford, UK: Oxford University Press P. 47–56.
  19. Ghosh A., Filipsson H.L., 2017. Applications of Foraminifera, Testate Amoebae and Tintinnids in Estuarine Palaeoecology // Applications of Paleoenvironmental Techniques in Estuarine Studies. Dordrecht: Springer. P. 313–337.
  20. Hammer Ø., Harper D.A.T., Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis // Palaeontologia electronica. V. 4. № 1. P. 9.
  21. Kosakyan A., Gomaa F., Lara E., Lahr D.J.G., 2016. Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae // European Journal of Protistology V. 55. P. 105–117.
  22. Krashevska V., Bonkowski M., Maraun M., Ruess L., Kandeler E., Scheu S., 2008. Microorganisms as driving factors for the community structure of testate amoebae along an altitudinal transect in tropical mountain rain forests // Soil Biology and Biochemistry. V. 40. № 9. P. 2427–2433.
  23. Kurina I.V., Golovatskaya E.A., 2018. Testate Amoebae Assemblages (Rhizopoda and Testacea) in the Peat Deposits of the Floodplain Terrace Swamp (the South of Forested Zone of Western Siberia) // Biology Bulletin. V. 45. № 1. P. 91–99.
  24. Levinsen H., Turner J.T. Nielsen T.G. Hansen B.W., 2000. On the trophic coupling between protists and copepods in arctic marine ecosystems // Marine Ecology Progress Series. V. 204. P. 65–77.
  25. Lousier J. D., Parkinson D., 1981. Evaluation of a membrane filter technique to count soil and litter testacea // Soil Biology and Biochemistry. V. 13. № 3. P. 209–213.
  26. Malysheva E.A., Mazei Yu.A., Yermokhin M.V., 2013. Testate amoebae community pattern in different types of boundary structures at the water-land contact zone // Biology Bulletin. V. 40. № 10. P. 823–831.
  27. Marcisz K., Lamentowicz M., Gałka M., Colombaroli D., Adolf C., Tinner W., 2019. Responses of vegetation and testate amoeba trait composition to fire disturbances in and around a bog in central European lowlands (northern Poland) // Quaternary science reviews. V. 208. P. 129–139.
  28. Mazei Y.A., Chernyshov V.A., 2011. Testate amoebae communities in the southern tundra and forest-tundra of Western Siberia // Biology Bulletin. V. 38. № 8. P. 789–796.
  29. Mazei Yu.A., Embulaeva E.A., 2009. Change in soil testate amoebae communities along the forest-steppe gradient in the Middle Volga // Arid ecosystems. V. 15. № 37. P. 13–23.
  30. Mazei Yu.A., Tsyganov A.N., Bubnova O.A., 2007. Structure of a community of testate amoebae in a Sphagnum dominated bog in upper Sura Flow (Middle Volga Territory) // Biology Bulletin. V. 34. № 4. P. 382–394.
  31. Mazei Yu.A., Tsyganov A.N., Bubnova O.A., 2009. Community structure of testate amoebae in waterlogged biotopes in the southern taiga of European Russia // Uspekhi sovremennoi biologii. V. 129. № 2. P. 212–222.
  32. Mazei Yu.A., Tsyganov A.N., Chernyshov V.A., Ivanovsky A.A., Payne R.J., 2018. First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) // Polar Biology. V. 41. № 6. P. 1133–1142.
  33. Mieczan T., Tarkowska-Kukuryk M., 2013. Diurnal dynamics of the microbial loop in peatlands: structure, function and relationship to environmental parameters // Hydrobiologia. V. 717. № 1. P. 189–201.
  34. Mitchell E.A.D., Gilbert D., Buttler A., Amblard C., Grosvernier P., Gobat J.M., 2003. Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment // Microbial Ecology. V. 46. № 2. P. 187–199.
  35. Nasser N.A., Patterson R.T., 2015. Conicocassis, a new genus of Arcellinina (testate lobose amoebae) // Palaeontologia Electronica. V. 18. № 46A. P. 1–11.
  36. Parish F., Sirin A., Charman D., Joosten H., Minaeva T., Silvius M., 2008. Assessment of peatlands, biodiversity and climate change: Main Report. Global Environment Centre, Kuala Lumpur, Malaysia, and Wetlands International, Wageningen. The Netherlands.
  37. Schönborn W., 1967. Taxozönotik der beschalten süsswasser-rhizopoden: eine raumstrukturanalytische untersuchung über lebensraumerweiterung und evolution bei der mikrofauna // Limnologica. V. 5. № 2. P. 159–207.
  38. Schönborn W., 1975. Ermittlung der Jahresproduktion von Boden-Protozoen. I. Euglyphidae (Rhizopoda, Testacea) // Pedobiologia. V. 15. P. 415–424.
  39. Siemensma F.J., 2022. Microworld, world of amoeboid organisms. World-wide electronic publication, Kortenhoef, the Netherlands [Электронный ресурс]. Режим доступа: https://arcella.nl/ Дата обновления: 31.05.2022.
  40. Sim T.G., Swindles G.T., Morris P.J., Baird A.J., Charman D.J., Amesbury M.J., et al., 2021. Ecology of peatland testate amoebae in Svalbard and the development of transfer functions for reconstructing past water-table depth and pH // Ecological Indicators. V. 131. P. 108122.
  41. Sirin A., Minayeva T., Yurkovskaya T., Kuznetsov O., Smagin V., Fedotov Yu., 2017. Russian Federation (European Part) // Mires and peatlands of Europe: Status, distribution and conservation. Joosten H., Tanneberger F., Moen A. (eds). Stuttgart: Schweizerbart Science Publishers. P. 589–616.
  42. Strassert J.F.H., Jamy M., Mylnikov A.P., Tikhonenkov D.V., Burki F., 2019. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life // Molecular Biology and Evolution. V. 36. P. 757–765.
  43. Tikhonenkov D.V., 2007/8. Species diversity of heterotrophic flagellates in Rdeisky reserve wetlands // Protistology. V. 5. № 2/3. P. 213–230.
  44. Todorov M., 2009. Morphology and Biometry of Nebela tenella Penard, 1893 (Amoebozoa: Arcellinida) // Acta Protozoologica. V. 48. № 2. P. 143–151.
  45. Todorov M., Bankov N., 2019. An atlas of sphagnum-dwelling testate amoebae in Bulgaria. Sofia: Pensoft Publishers. 286 p.
  46. Tran H.Q., Tran V.T.H., Tikhonenkov D.V., 2021. Freshwater testate amoebae from waterbodies of North Vietnam with the finding of indicator species // Limnology. V. 22. № 1. P. 151–160.
  47. Vaqué D., Guixa-Boixereu N., Gasol J.M., Pedrós-Alió C., 2002. Distribution of microbial biomass and importance of protists in regulating prokaryotic assemblages in three areas close to the Antarctic Peninsula in spring and summer 1995/96 // Deep Sea Research Part II: Topical Studies in Oceanography. V. 49. № 4–5. P. 847–867.
  48. Wanner M., Xylander W.E.R., 2003. Transient fires useful for habitat-management do not affect soil microfauna (testate amoebae) – a study on an active military training area in eastern Germany // Ecological Engineering. V. 20. № 2. P. 113–119.

© О.Н. Загумённая, Д.А. Филиппов, Д.Г. Загумённый, А.А. Комаров, А.Н. Цыганов, Д.В. Тихоненков, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах