ON SMALL CONTINENTAL MAMMOTHS AND DWARFISM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the evolution of proboscideans, the appearance of dwarf and semi-dwarf forms occurred repeatedly, in different territories and at different times, due to a lack of resources caused by geographic isolation on islands and by landscape isolation on the mainland. Despite a significant amount of information on the insular forms of mammoths and elephants, the question of the relationship between a decrease in body size and morphological changes in the dental system remains a matter of debate. Some data show that dwarfism was accompanied by a decreasing number of plates (lophs) and by tooth enamel thickening. Other data show that changes in the dental system on the islands indicate that the number of plates could either decrease or remain unchanged, or even increase. Taking into account the importance of the number of plates as a diagnostic feature in the species identification of proboscidean taxa and the lack of a consensus on the stability of the trend towards a decrease in the number of plates from large continental ancestors to insular dwarf descendants, we (1) summarize the data on the records of small tooth-mammoths of the genus Mammuthus with a reduced number of plates in sites across northern Eurasia, (2) provide new radiocarbon dates, and (3) consider the number of plates as a possible sign of dwarfization in continental mammoths. The small teeth of the last generation of M. primigenius from the coastal part of northeastern Siberia and a comparison with data from other regions show that the posterior sections of mammoth cheek teeth are the most variable and represent a reduction complex. For the woolly mammoth, reduction primarily affects that part of the crown which became more complex by the gradually increasing number of plates during the phyletic evolution in the Middle to Late Pleistocene. The rapid loss of the evolutionary achievements through reduction is not a unique feature of woolly mammoth teeth. This has been observed in other mammals as well. Similar reduction complexes are observed for the cheek teeth of proboscideans and rodents of the subfamily Arvicolinae, as is shown by a decrease in the number of serially homologous crown elements: plates in proboscideans and pairs of prisms in voles. A comparison of the number of plates with the size of the teeth of M. primigenius suggests that a decrease in the number of dental plates, while retaining other specific features of the tooth, can be used as a criterion for separating semi-dwarf and small specimens of the woolly mammoth. The largest decrease in size of mainland mammoths is observed during warming periods, which also showed significant transformations of landscapes in a reduction of available resources.

About the authors

I. V. Kirillova

Institute of Geography, Russian Academy of Sciences

Author for correspondence.
Email: ikirillova@yandex.ru
Russia, 119017, Moscow, Staromonetnyi Lane, Bldg 29

E. A. Markova

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: emrk@yandex.ru
Russia, 620144, Ekaterinburg, 202, 8 Marta Str.

A. V. Panin

Institute of Geography, Russian Academy of Sciences

Author for correspondence.
Email: a.v.panin@yandex.ru
Russia, 119017, Moscow, Staromonetnyi Lane, Bldg 29

J. van der Plicht

Center for Isotope Research, Groningen University

Author for correspondence.
Email: j.van.der.plicht@rug.nl
The Netherlands, 9747, AG, Groningen, Nijenborgh 46

V. V. Titov

Southern Scientific Centre, Russian Academy of Sciences

Author for correspondence.
Email: vvtitov@yandex.ru
Russia, 344006, Rostov-on-Don, Chekhov Str., Bldg 41

References

  1. Aбрамсон Н.И., Лебедев В.С., Тесаков A.С., Банникова А.А., 2009. Надвидовые родственные связи в подсемействе полевочьих (Rodentia, Cricetidae, Arvicolinae): неожиданный результат анализа ядерных генов // Молекулярная биология. Т. 43. № 5. С. 897–909.
  2. Боескоров Г.Г., Мащенко Е.Н., 2014. Систематическое положение “суольского” мамонта (Mammuthus, Proboscidea) // Наука и образование. № 2. С. 48–54.
  3. БМЭ, Большая Медицинская Энциклопедия, 1979. Под ред. Б.В. Петровского, 3-е издание. Т. 10. [Электронный ресурс]. Режим доступа: https:// бмэ.орг/index.php
  4. Вангенгейм Э.А., 1961. Палеонтологическое обоснование стратиграфии антропогеновых отложений Севера Восточной Сибири (по фауне млекопитающих) // Труды геологического института АН СССР. Вып. 48. М.: Изд-во АН СССР. 183 с.
  5. Васильев С.К., 2008. Бизоны (Bison priscus Bojanus, 1827) позднего плейстоцена ю-в Западной Сибири // Археология, этнография и антропология Евразии. № 2. С. 34–56.
  6. Верещагин Н.К., 1977. Берелёхское “кладбище” мамонтов // Труды Зоологического института АН СССР. Т. 72. С. 5–50.
  7. Гарутт В.Е., 1977. Зубная система слонов в онтогенезе и филогенезе // Труды зоологического института АН СССР. Т. 73: Мамонтовая фауна и среда ее обитания в антропогене СССР. Л.: Наука. С. 3–36.
  8. Гарутт В.Е., Форонова И.В., 1976. Исследование зубов вымерших слонов. Методические рекомендации. Институт геологии и геофизики СО АН СССР, Новосибирск. 35 с.
  9. Гарутт В.Е., Аверьянов А.О., Вартанян С.Л., 1993. О систематическом положении голоценовой популяции мамонтов Mammuthus primigenius (Blumenbach, 1799) острова Врангеля (Северо-Восток Сибири) // Доклады академии наук. Т. 332. № 6. С. 799–801.
  10. Громов В.И., 1929. Мелкий мамонт. Природа. № 3. С. 262.
  11. Дуброво И.А., 1960. Древние слоны СССР // Труды палеонтологического института. Т. 85. Вып. 1. М.: Изд-во АН СССР. 83 с.
  12. Зубов А.А., 1966. К выделению новой области в системе антропологии (принципы этнической одонтологии) // Вопросы общей этнографии и антропологии. № 1. С. 2–13.
  13. Косинцев П.А., Бобковская Н.Е., Бородин А.В., Зиновьев Е.В., Некрасов А.Е., Трофимова С.С., 2004. Трогонтериевый слон нижнего Иртыша. Екатеринбург: Волот. 260 с.
  14. Кравченко Н.А., 1963. Разведение сельскохозяйственных животных. М.: Сельхозиздат (Учебники и учеб. пособия для высших сельскохозяйственных учебных заведений). 212 с.
  15. Николаев В.И., Кузнецова Т.В., Алексеев А.О., Ди Маттео А., Мащенко Е.Н., Паломбо М.Р., Якумин П., 2011. Предварительные результаты изотопных и геохимических исследований позднеплейстоценовых мамонтов северной Якутии // Известия РАН. Серия географическая. № 2. С. 78–88.
  16. Млекопитающие России: систематико-географический справочник, 2012. Под ред. Павлинова И.Я. и Лисовского А.А. М.: Товарищество научных изданий КМК. 604 с.
  17. Agenbroad L.D., 2009. Mammuthus exilis from the California Channel Islands: height, mass, and geologic age // Damiani C.C., Garcelon D.K. (eds): Proc. of 15th 7th California Islands. Symposium, 15–19. Institute for Wildlife Studies, Arcata, CA.
  18. Agenbroad L.D., Morris D., Roth L., 1999. Pygmy mammoths Mammuthus exilis from Channel Islands National Park, California (USA) // Deinsea. № 6. P. 89–102.
  19. Begumu S., Miah A.G., Mobarak H., Chowdhury A., Jemy A., Salma U., 2015. Identification and characterization of dwarf cattle available in Dinajpur district // Asian Journal of Medical and Biological Research. № 1 (3). P. 380–386.
  20. Benítez-López A., Santini L., Gallego-Zamorano J., Milá B., Walkden P. et al., 2021. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates // Nature Ecology & Evolution. V. 5. P. 768–786.
  21. Boegheim I.J.M., Leegwater P.A.J., van Lith H.A., Back W., 2017. Current insights into the molecular genetic basis of dwarfism in livestock // The Veterinary Journal. V. 224. P. 64–75.
  22. Bronk Ramsey C., 2009. Bayesian analysis of radiocarbon dates // Radiocarbon. № 51. P. 337–360.
  23. Brown M.B., Wells E., 2020. Skeletal dysplasia-like syndromes in wild giraffe // BMC Res Notes 13, 569(2020). https://doi.org/10.1186/s13104-020-05403-9
  24. Bryson R.A., Agenbroad L.D., McEnaney DeWall K., 2010. Paleoclimate modeling and paleoenvironmental interpretations for three instances of island dwelling mammoths // Quaternary International. V. 217. P. 6–9.
  25. Cho S.-W., Lee H.-A., Cai J., Lee M.-J., Kim J.-Y., Ohshima H., Jung H.-S., 2007. The primary enamel knot determines the position of the first buccal cusp in developing mice molars // Differentiation. V. 75 (5). P. 441–451. Chondrodysplasia dwarfism in miniature cattle. [Электронный ресурс]. Режим доступа: http://miniature-cattle.com/graphics/bd-chondro-title1.png
  26. Christensen M., Di-Poi N., Asher R., Holzenberger M., Jernvall J., 2017. Super-Sizing Teeth – from Mice to Elephants // Mechanisms of development. V. 145. P. 1–20.
  27. Cranbrook E., Payne J., Leh Ch. M.U., 2007. Origin of the Elephas maximus L. elephants of Borneo // The Sarawak Museum Journal. № 63 (New Series № 84). P. 95–125.
  28. Crockford S.J., 2008. In island syndrome, does the hormone phenotype of founders determine life history traits and body size of descendants? Hormone phenotypes & island syndrome. Unpublished manuscript, on file at the Dept. of Anthropology, University of Victoria, British Columbia. P. 2–39.
  29. D’Ambrosia A.R., Clyde W.C., Fricke H.C., Gingerich P.D., Abels H.A., 2017. Repetitive mammalian dwarfing during ancient greenhouse warming events // Science advances. V. 3. e1601430
  30. Fejfar O., Heinrich W.D., Kordos L., Maul L.C., 2011. Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia) // Palaeontologia Electronica. V. 14 (27A). 38 p.
  31. Flacke G.L., Decher J., 2019. Choeropsis liberiensis (Artiodactyla: Hippopotamidae) // Mammalian Species. V. 51. № 982. P. 100–118.
  32. Foronova I.V., 2007. Thin-enamel dental specialization in mammoth evolution: an example of direction selection // Quaternary International. V. 169–170. P. 95–104.
  33. Foronova I.V., 2014. Mammoths of the Molodova V Paleolithic site (Dniester Basin): the case of dental thin-enamel specialization and paleoecological adaptation // Quaternary International. V. 326–327. P. 235–242.
  34. Foronova I.V., Zudin A.N., 1999. The structure of the lineage Archidiskodon–Mammuthus in Eurasia and peculiarities of its evolution // Haynes G., Klimovicz J., Reumer J.W.F. (eds): Mammoths and the Mammoth Fauna: Studies of Extinct Ecosystems, Deinsea. V. 9. P. 103–118.
  35. Foster J., 1964. The evolution of mammals on islands // Nature. V. 202. № 4929. P. 234–235.
  36. Gould G.C, MacFadden B.J., 2004. Gigantism, dwarfism, and Cope’s rule: nothing in evolution makes sense without a phylogeny // Bulletin of the American Museum of Natural History. Т. 285. P. 219–237. – ссылка в Табл. 1.
  37. Grubb P., Groves C.P., Dudley J.P. Shoshani J., 2000. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900) // Elephant. V. 2. № 4. P. 1–4.
  38. Herridge V.L., 2010. Dwarf Elephants on Mediterranean Islands: A Natural Experiment in Parallel Evolution. PhD Thesis, 2 vols. University College London. [Электронный ресурс]. Режим доступа: https://discovery.ucl.ac.uk/ id/eprint/133456/
  39. Herridge V.L., Lister A.M., 2012. Extreme insular dwarfism evolved in a mammoth // Proc. of the Royal Society B, Biological Sciences. V. 279. P. 3193–3200.
  40. Jernvall J., Keranen S.V.E., Thesleff I., 2000. Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography // Proc. of the National Academy of Sciences USA. V. 97. P. 14 444–14 448.
  41. Karl H.-V., 2019. Reduced or absent hypoconulids of lower third molar in dwarf cattle in Central Germany (13th/14th century) // 7th meeting of the ICAZ Animal Palaeopathology Working Group (APWG) Beautiful Anomalies Department of Archaeology, Institute of History and Archaeology University of Tartu Estonia 23–26 May 2019.
  42. Karl H.-V., 2020. Archäozoologische Analyse der Tierknochenreste von der Wysburg bei Weisbach, Saale-Orla-Kreis // Wysburg und Saalburg, Zwei spätmittelalterliche Kleinburgen am oberen Saalelauf im östlichen Thüringer Schiefergebirge. Langenweissbach. S. 95–132.
  43. Khudaverdyan A.Yu., 2016. A dwarfism skull: excavated on the site of the Late Bronze Age and Early Iron Age cemetery at Artsvakar (Armenia) // Journal of Paleopathology (Italy). T. 26. № 2–3. P. 93–104.
  44. Kirillova I.V., 2009. Unusual tooth pathology in mammoth (Mammuthus primigenius) from Yakutia // Rus. J. Theriol. V. 16 (1). P. 29–36.
  45. Kirillova I.V., Shidlovskiy F.K., Titov V.V., 2012. Kastykhtakh mammoth from Taimyr (Russia) / // Quaternary International. V. 276–277. P. 269–277.
  46. Kirillova I.V., Borisova O.K., Chernova O.F., van Kolfschoten T., van der Lubbe J.H.J.L. et al., 2020. ‘Semi-dwarf’ woolly mammoths from the East Siberian Sea coast, continental Russia // Boreas. V. 49. P. 269–285.
  47. Kozawa L.H., Mishima H., Suzuki K., Ferguson M.W.J., 2001. Dental formula of elephant by the development of tooth germ // Cavarretta G., Gioia P., Mussi M., Palombo M.R. (Eds), The World of Elephants: Rome: CNR – Consiglio Nazionale delle Ricerche. P. 639–642.
  48. Larramendi A., 2016. Shoulder height, body mass, and shape of proboscideans // Acta Palaeontologica Polonica. V. 61. № 3. P. 537–574.
  49. Lister A.M., 1989. Rapid dwarfing of red deer on Jersey in the Last Interglacial // Nature. V. 342. P. 539–542.
  50. Lister A.M., 2021. Phenotypic plasticity in the fossil record // Pfennig, D.W. (Ed.), Phenotypic Plasticity and Evolution: Causes, Consequences, Controversies. CRC Press, Boca Raton, FL. P. 267–297.
  51. Lister A.M., 2022. Mammoth evolution in the late Middle Pleistocene: The Mammuthus trogontherii-primigenius transition in Europe // Quaternary Science Reviews. V. 294. Paper 107 693. https://doi.org/10.1016/j.quascirev.2022.107693
  52. Lister A.M., Joysey K.A., 1992. Scaling effects in elephant dental evolution – the example of Eurasian Mammuthus. In: Structure, Function and Evolution of Teeth. Editors: P. Smith, E. Tchernov. P. 185–213.
  53. Lister A.M., Grün R., 2015. Mammoth and musk ox ESR-dated to the early midlandian at Aghnadarragh, county Antrim, Northern Ireland, and the age of the fermanagh stadial // Geological Journal. V. 50. P. 306–320.
  54. Maglio V.J., 1972. Evolution of mastication in the Elephantidae // Evolution. V. 26. P. 638–658.
  55. Maglio V.J., 1973. Origin and evolution of the Elephantidae // Transactions of the American Philosophical Society. V. 63. P. 1–149.
  56. Marciszak A., Ivanoff D.V., Semenov Y.A., Talamo S., Ridush B., Stupak A., Yanish Y., Kovalchuk O., 2022. The Quaternary lions of Ukraine and a trend of decreasing size in Panthera spelaea // Journal of Mammalian Evolution. V. 30. P. 109–135. https://doi.org/10.1007/s10914-022-09635-3
  57. Markova E.A., 2014. Assessment of tooth complexity in Arvicolines (Rodentia): a morphotype ranking approach // Biology Bulletin. V. 41. P. 589–600.
  58. Markova E., Smirnov N., 2018. Phenotypic diversity arising from a limited number of founders: A study of dental variation in laboratory colonies of collared lemmings, Dicrostonyx (Rodentia: Arvicolinae) // Biological Journal of the Linnean Society. V. 125. P. 777–793.
  59. Markova E.A., Sibiryakov P.A., Kartavtseva I.V., Lapin A.S., Morozkina A.V. et al., 2019. What can an invasive species tell us about evolution? A study of dental variation in disjunctive populations of Microtus rossiaemeridionalis (Arvicolinae, Rodentia) // Journal of Mammalian Evolution. V. 26. P. 267–282.
  60. Markova E., Bobretsov A., Borodin A., Rakitin S., Sibiryakov P. et al., 2020. The effects of population bottlenecks on dental phenotype in extant arvicoline rodents: implications for studies of the quaternary fossil record // Quaternary Science Reviews. V. 228. 106045.
  61. Martin J.M., Mead J.I., Barboza P.S., 2018. Bison body size and climate change // Ecology and Evolution. P. 1–11.
  62. Martin J.M., Barboza P.S., 2020. Thermal biology and growth of bison (Bison bison) along the Great Plains: examining four theories of endotherm body size // Ecosphere. V. 11 (7): e03176. 13 p.
  63. Maschenko E.N., Gablina S.S., Tesakov A.S., Simakova A.N., 2006. The Sevsk woolly mammoth (Mammuthus primigenius) site in Russia: Taphonomic, biological and behavioral interpretations // Quaternary International. № 142–143. P. 147–165.
  64. McCabe A.M., Coope G.R., Gennard D.E., Doughty P., 1987. Freshwater organic deposits and stratified sediments between Early and Late Midlandian (Devensian) till sheets at Aghnadarragh, County Antrim, N. Ireland // Journal of Quaternary Science. V. 2. P. 11–33.
  65. Mol D., Reumer J.W.F., de Vos J., Cleveringa P., 1999. On remains of a very small (female) woolly mammoth, Mammuthus primigenius, from Western Europe // Reumer, J.W.F. de Vos, J. (Eds), Official Conference Papers, 2nd International Mammoth Conference, May 16–20, 1999. Abstracts. P. 42–44.
  66. Mook W.G., Streurman H.J., 1983. Physical and chemical aspects of radiocarbon dating // PACT Publication. V. 8. P. 31–55.
  67. Mook W.G., van der Plicht J., 1999. Reporting 14C activities and concentrations // Radiocarbon. V. 41. P. 227–239.
  68. Orr N., Back W., Gu J., Leegwater P., Govindarajan P., Conroy J. et al., 2010. Genome-wide SNP association–based localization of a dwarfism gene in Friesian dwarf horses // Animal Genetics. 2010; 41 Suppl 2:2-7. https://doi.org/10.1111/j.1365-2052.2010.02091.x
  69. Ouden N., Den N., Reumer J.W.F., Van Den Hoek Ostende L.W., 2012. Did mammoth end up a lilliput? Temporal body size trends in Late Pleistocene Mammoths, Mammuthus primigenius (Blumenbach, 1799) inferred from dental data // Quaternary International. V. 255. P. 53–58.
  70. Palombo M.-R., 2001. Endemic elephants of the Mediterranean Islands: Knowledge, problems and perspectives // Proc. of the 1st International Congress of the World of Elephants, Rome, Italy, 6–20 October 2001. P. 486–491.
  71. Palombo M.-R., 2009. Body size structure of Pleistocene mammalian communities: what support is there for the “island rule”? // Integrative Zoology. V. 4. P. 341–356.
  72. Palombo M.R., Ferretti M.P., Pillola G.L., Chiappini L., 2012. A reappraisal of the dwarfed mammoth Mammuthus lamarmorai (Major, 1883) from Gonnesa (south-western Sardinia, Italy) // Quaternary International. V. 255. P. 158–170.
  73. Prescott J.R., Hutton J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations // Radiation Measurements. V. 23. P. 497–500.
  74. Reig O.A., 1977. A proposed unified nomenclature for the enameled components of the molar teeth of the Cricetidae (Rodentia) // Journal of Zoology. V. 181. P. 227–241.
  75. Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G. et al., 2013. IntCal 13 and Marine13 radiocarbon age calibration curves 050,000 years cal BP // Radiocarbon. V. 55. P. 1869–1887.
  76. Reumer J.W.F., Mol D., de Vos J., 2002. The Wrangel dwarf mammoths were no island endemics // Waldren W.H., Ensenyat J.A. (Eds). World Islands in Prehistory // International Insular Investigations. V Deia International Conference of Prehistory. British Archaeological Reports. International Series. V. 1095. P. 415–419.
  77. Rohland N., Reich D., Mallick S., Meyer M., Green R.E., Georgiadis N.J., Roca A.L., Hofreiter M., 2010. Genomic DNA Sequences from Mastodon and Woolly Mammoth Reveal Deep Speciation of Forest and Savanna Elephants // PLoS Biol 8(12): e1000564. https://doi.org/10.1371/journal.pbio.1000564
  78. Roth V.L., 1989. Fabricational noise in elephant dentitions // Paleobiology. V. 15. № 2. P. 165–179.
  79. Scarborough M.E., 2022. Extreme Body Size Variation in Pleistocene Dwarf Elephants from the Siculo-Maltese Palaeoarchipelago: Disentangling the Causes in Time and Space // Quaternary. V. 5. Paper 17. BMC Res Notes 13, 569(2020) https://doi.org/10.1186/s13104-020-05403-9
  80. Shoshani J., 1996. Skeletal and other basic anatomical features of elephants // Shoshani J, Tassy P. (eds). The Proboscidea: Evolution and Palaeoecology of Elephants and Their Relatives. Oxford: Oxford University Press. P. 9–20.
  81. Shoshani J., Walter R.C., Abraha M., Berhe S., Tassy P., Sanders W.J., Marchant G.H., Libsekal Y., Ghirmai T., Zinner D., 2006. A proboscidean from the late Oligocene of Eritrea, a “missing link” between early Elephantiformes and Elephantimorpha, and biogeographic implications. Proc Natl Acad Sci U S A. Nov 14. V. 103(46). P. 17296–17301.
  82. de Silva S., Weerathunga U.S., Kumara T.V., 2014. Morphometrics of a wild Asian elephant exhibiting disproportionate dwarfism // PeerJ PrePrints. CC-BY 4.0 Open Access. https://doi.org/10.7287/peerj.preprints.234v1
  83. Slon V., Nagar Y., Kupermana T., Hershkovitz I., 2011. Case of Dwarfism from Byzantine City Rehovot-in-the-Negev, Israel // International Journal of Osteoarchaeology. V. 23. P. 573–589.
  84. Stock C., Furlong E.L., 1928. The Pleistocene elephants of Santa Rosa island. California // Science. V. 68 (1754). P. 140–141.
  85. Tikhonov A., Agenbroad L., Vartanyan S., 2003. Comparative analysis of the mammoth populations on Wrangel Island and the Channel Islands // Deinsea. № 9. P. 415–420.
  86. Vandenberghe D., 2004. Investigation of the optically stimulated luminescence dating method for application to young geological sediments. PhD Thesis. Ghent University. 357 p.
  87. van der Geer A.A.E., 2021. Evolution of Island Mammals: Adaptation and Extinction of Placental. John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 545 p.
  88. van der Geer A.A.E., van den Bergh G.D., Lyras G.A., Prasetyo U.W., Due R.A., et al., 2016. The effect of area and isolation on insular dwarf proboscideans // Journal of Biogeography. T. 43. P. 1656–1666.
  89. van der Plicht J., Wijma S., Aerts A.T., Pertuisot M.H., Meijer H.A.J., 2000. The Groningen AMS facility: status report // Nuclear Instruments and Methods in Physics Research B. V. 172. P. 58–65.
  90. van Valen L.M., 1994. Serial homology: the crests and cusps of mammalian teeth // Acta Palaeontologica Polonica. V. 38 (3/4). P. 145–158.
  91. Waters-Rist A.L., Hoogland M.L.P., 2013. Osteological evidence of short-limbed dwarfism in a nineteenth century Dutch family: Achondroplasia or hypochondroplasia // International Journal of Paleopathology. № 3(4). DOI: 10.1016 / j.ijpp.2013.08.004
  92. Young P., 1988. A palaeoecological study of some early Midlandian deposits at Aghnadarragh, Co. Antrim. Unpublished M.Sc. Thesis, Queen’s University, Belfast.
  93. Ziegler R., 2001. An extraordinary small mammoth (Mammuthus primigenius) from SW Germany // Stuttgarter Beitrage zur Naturkunde. Series B. Geologie und Palaontologie. V. 300. P. 1–41.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (5MB)
3.

Download (2MB)
4.

Download (3MB)
5.

Download (3MB)
6.

Download (1MB)

Copyright (c) 2023 И.В. Кириллова, Е.А. Маркова, А.В. Панин, Й. ван дер Плихт, В.В. Титов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies