DENTAL VARIATION IN AN INVASIVE SPECIES AT THE DISPERSAL STAGE: MICROTUS ROSSIAEMERIDIONALIS (ARVICOLINAE, RODENTIA) IN THE IRKUTSK OBLAST’, SOUTHERN CIS-BAIKAL REGION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The East European vole is a facultative synanthropic species that actively spreads in the eastern part of northern Eurasia. The distribution area of the species in the Irkutsk Oblast’ has been known as a disjunct part of the range since the 1980s. Our dataset includes 98 individuals caught in 2016–2017 and 2021–2023 in the eastern segment of the species’ dispersal area, where the East European vole was first discovered in the early 2010s. Animals were caught in anthropogenically transformed areas spanning from the outskirts of the city of Irkutsk to kilometer 23 of the Goloustnensky Tract; trapping in natural biotopes revealed no M. rossiaemeridionalis. Species identification was based on molecular genetic markers. Morphological and fine structural characteristics of molar teeth were studied using both light and scanning electron microscopy. The complexity of the occlusal surface, the alternation patterns of the enamel cutting edges (occlusal regularity), and the presence or absence of atypical extra elements such as prismatic folds and prisms in places of the early cricetid dental features were assessed. The estimates of complexity and regularity patterns fell within the range of dental variability known for the continuous distribution area of the species. The atypical extra elements on molars were described for the first time in M. rossiaemeridionalis based on material coming from two trapping sites. The extra elements were confined to the posterior lobes of the lower molars, where an additional reentrant angle separated an extra prism in place of a hypoconid. Enamel walls of the extra prism showed an inversion of the enamel types (a thin layer of radial enamel on the anterior wall and a thick layer of lamellar plus radial enamel on the posterior wall) that was contrary to the evolutionary patterns and functional requirements known for Microtus. The local micropopulation studied is concluded to show phenotypic consequences of a reduced number of founders. Apparently, the species could have faced sequential establishment events in the study area. Our results indicate that dental features are useful for monitoring the arvicoline species, the distribution limits of which are subject to significant spatial changes in the relatively short time intervals available for observation.

About the authors

E. A. Markova

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: emrk@yandex.ru
Russia, 620144, Ekaterinburg, ul. 8 Marta, 202

S. A. Borisov

Irkutsk Antiplague Research Institute of Siberia and the Far East

Author for correspondence.
Email: borisov.irk@mail.ru
Russia, 664047, Irkutsk, ul. Trilissera, 78

S. V. Zykov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: svzykov@yandex.ru
Russia, 620144, Ekaterinburg, ul. 8 Marta, 202

P. A. Sibiryakov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: p_sibiryakov@rambler.ru
Russia, 620144, Ekaterinburg, ul. 8 Marta, 202

L. E. Yalkovskaya

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: lida@ipae.uran.ru
Russia, 620144, Ekaterinburg, ul. 8 Marta, 202

S. V. Bulycheva

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: bulycheva.2201@mail.ru
Russia, 620144, Ekaterinburg, ul. 8 Marta, 202

References

  1. Баянова А.А., 2018. Анализ горимости лесных ресурсов Иркутской области // Мониторинг. Наука и технологии. № 2. С. 35–38.
  2. Демидович А.П., 2006. Антропогенная трансформация сообществ грызунов как компонента паразитарных систем // Бюллетень ВСНЦ СО РАМН. № 2 (48). С. 28–33.
  3. Демидович А.П., 2016. Сообщества грызунов сельскохозяйственных угодий Иркутской области // Вестник Иркутской государственной сельскохозяйственной академии. № 76. С. 97–102.
  4. Коваленко Е.Е., 2003. Эффект нормы признака и его теоретическое значение // Эволюционная биология: история и теория. Вып. 2. / Отв. ред. Колчинский Э.И. Ред.-сост. Попов И.Ю. СПб.: Политехника-сервис. С. 66–87.
  5. Кораблев Н.П., Кораблев П.Н., Кораблев М.П., 2018. Микроэволюционные процессы в популяциях транслоцированных видов: евроазиатский бобр, енотовидная собака, американская норка. М.: Товарищество научных изданий КМК. 402 с.
  6. Липин С.И., Хромичек С.И., Похряева А.Н., Суханов Н.А., Мирончук Ю.В., Якубенок М.И., 1987. Восточноевропейская полевка – носитель туляремии в южных районах Восточной Сибири // Вопросы региональной гигиены, санитарии и эпидемиологии. Тез. докл. науч.-практ. конференции, 18–19 дек., 1987. Вып. 2. Якутск, 1987. С. 167–169.
  7. Малыгин В.М., Баскевич М.И., Хляп Л.А., 2019. Инвазии видов-двойников обыкновенной полевки // Российский журнал биологических инвазий. № 4. С. 71–93.
  8. Малышев Ю.С., 2013. К вопросу о формировании нового участка ареала восточноевропейской полевки Microtus rossiaemeridionalis Ognev в Прибайкалье // Байкальский зоологический журнал. № 1 (12). С. 105– 108.
  9. Маркова Е.А., 2013. Оценка сложности щечных зубов полевок (Arvicolinae, Rodentia): ранжированный морфотипический подход // Зоологический журнал. Т. 92. № 8. С. 968–980.
  10. Маркова Е.А., Ялковская Л.Э., Зыков С.В., 2013. Морфологическая и хромосомная изменчивость обыкновенной полевки Microtus arvalis Pall. на северной границе распространения // ДАН. Т. 448. № 1. С. 109–112.
  11. Мейер М.Н., Голенищев Ф.Н., Раджабли С.И., Саблина О.В., 1996. Серые полевки (подрод Microtus) фауны России и сопредельных территорий. СПб.: Зоол. ин-т РАН. 320 с.
  12. Моролдоев И.В., Картавцева И.В., 2017. Новые данные об инвазии восточноевропейской полевки (Microtus rossiaemeridionalis) на восток от г. Улан-Удэ // Вестник Бурятского государственного университета. Биология. География. Вып. 3. С. 130–134.
  13. Моролдоев И.В., Шереметьева И.Н., Картавцева И.В., 2017. Первая находка восточноевропейской полевки (Microtus rossiaemeridionalis) в Бурятии // Российский журнал биологических инвазий. № 2. С. 88–94.
  14. Обыкновенная полевка: виды-двойники, 1994. / В.Е. Соколов [и др.]. М.: Наука. 432 с.
  15. Попов В. В., 2011. Млекопитающие Иркутской области (аннотированный список) // Байкальский зоологический журнал. № 1 (6). С. 69–78.
  16. Растительный покров Иркутской области, 2013. [Электронный ресурс] ИРКИПЕДИЯ. Эл. дан. URL: http://irkipedia.ru/content/rastitelnyy_pokrov_atlas (дата обращения 20.03.2023)
  17. Чепраков М.И., 2022. Фенотипическая изменчивость и наследование нетипичной формы anterior lobe M1 копытных леммингов (Dicrostonyx, Rodentia, Arvicolinae) // Известия РАН. Серия биологическая. № 5. С. 482–488.
  18. Allendorf F.W., Lundquist L.L., 2003. Introduction: population biology, evolution, and control of invasive species // Conservation Biology. V. 17. P. 24–30.
  19. Blackburn T.M., Pyšek P., Bacher S., Carlton J.T., Duncan R.P., Jarošık V., Wilson J.R.U., Richardson D.M., 2011. A proposed unified framework for biological invasions // Trends in Ecology & Evolution. V. 26. P. 333–339.
  20. Broad Institute, Microtus ochrogaster genome assembly MicOch1.0, 2012. [Электронный ресурс]. Режим доступа: https://www.ncbi.nlm.nih.gov/assembly/GCF_ 000317375.1. Дата обновления: 07.12.2012. Дата последнего доступа: 25.04.2023.
  21. Chaline J., 1972. Les rongeurs du Pleistocene moyen et superieur de France (Systematique – Biostratigraphie – Paleoclimatologie), Cahiers de Paléontologie. Paris: C.N.R.S. 410 p.
  22. Chapelle V., Silvestre F., 2022. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations // Epigenomes. V. 6. № 4. P. 31.
  23. Cho S.-W., Kwak S., Woolley T.E., Lee M.J., Kim E.J., Baker R.E., Kim H.J., Shin J.S., Tickle C., Maini P.K., Jung H.S., 2011. Interactions between Shh, Sostdc1 and Wnt signalling and a new feedback loop for spatial patterning of the teeth // Development. V. 138. P. 1807– 1816.
  24. Galiana N., Lurgi M., Montoya J.M., López B.C., 2014. Invasions cause biodiversity loss and community simplification in vertebrate food webs // Oikos. V. 123 (6). P. 721–728.
  25. Genome Reference Consortium, Mouse Build 39 (GRCm39), 2020. [Электронный ресурс]. Режим доступа: https:// www.ncbi.nlm.nih.gov/assembly/GCF_000001635.27. Дата обновления: 24.06.2020. Дата последнего доступа: 25.04.2023.
  26. Genome Reference Consortium, Human Build 38 patch release 14 (GRCh38.p14), 2022. [Электронный ресурс]. Режим доступа: https://www.ncbi.nlm.nih.gov/assembly/ GCF_000001405.40. Дата обновления: 03.02.2022. Дата последнего доступа: 25.04.2023.
  27. Gileva E.A., 2004. The B chromosome system in the varying lemming Dicrostonyx torquatus Pall., 1779 from natural and laboratory populations // Russian Journal of Genetics. V. 40. P. 1399–1406.
  28. Gileva E.A, Chebotar N.A., 1979. Fertile XO males and females in the varying lemming, Dicrostonyx torquatus Pall. (1779) // Heredity. V. 42. P. 67–77.
  29. Janossy D., Schmidt E., 1960. Extreme Varianten des M1 der Feldmaus (Microtus arvalis Pallas) in Ungarn // Vertebrata Hungarica. V. 2. P. 137–142.
  30. Janossy D., Schmidt E., 1975. Extreme Varianten des M1 der Feldmaus (Microtus arvalis Pallas) in Ungarn. II // Zeitschrift für Säugetierkunde. V. 40. P. 34–36.
  31. Jentzsch M., Kraft R., Lemkul A., Kapischke H.-J., Maternowski H.J., Wolf R., 2020. Anomalies and pathological changes of skulls and dentition of wild small mammal species from Germany // Journal of Vertebrate Biology. V. 69 (4). 20072.
  32. Kangas A.T., Evans A.R., Thesleff I., Jernvall J., 2004. Nonindependence of mammalian dental characters // Nature. V. 432. P. 211–214.
  33. Kapischke H., 2014. Zur Variabilität der Zähne von Feldmäusen Microtus arvalis (Pallas, 1779) aus Sachsen (Übersicht zu einer Sammlung im Rahmen des Projektes: Atlas der Säugetiere Sachsens) // Veröffentlichungen des Museums der Westlausitz Kamenz. H. 32. S. 85–110.
  34. Kapischke H., Wilhelm M., Fabian K., 2015. Zahnbesonderheit einer Feldmaus Microtus arvalis aus Eulengewöllen // Ornithologische Mitteilungen. № 67. S. 128.
  35. Koenigswald W von., 1980. Schmeltzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia) // Abhandlungen der Senckenbergische Naturforschende Gesellschaft. H. 239. S. 1–139.
  36. Kraft R., 2000. Ungewöhnliche Molarenbildungen bei Feldmaus (Microtus arvalis) und Erdmaus (Microtus agrestis) // Säugetierkundliche Informationen. 4. H. 23–24. S. 587–589.
  37. Luzi E., Lopez-García H.-M., 2019. Relative size variations in two vole species: A climatic proxy for the identification of humid-arid pulses during Late Pleistocene in Southwestern Europe? // Quaternary Science Reviews. V. 223. 105920.
  38. Luzi E., Lopez-García H.-M., 2019a. Patterns of variation in Microtus arvalis and Microtus agrestis populations from Middle to Late Pleistocene in southwestern Europe // Historical Biology. V. 31. № 5. P. 535–543.
  39. Mačić V., Albano P.G., Almpanidou V., Claudet J., Corrales X., Essl F., Evagelopoulos A., Giovos I., Jimenez C., Kark S., Marković O., Mazaris A.D., Ólafsdóttir G.Á., Panayotova M., Petović S., Rabitsch W., Ramdani M., Rilov G., Tricarico E., Vega Fernández T., Sini M., Trygonis V., Katsanevakis S., 2018. Biological invasions in conservation planning: a global systematic review // Frontiers in Marine Science. V. 5. P. 178.
  40. Maridet O., Ni X., 2013. A new cricetid rodent from the early Oligocene of Yunnan, China, and its evolutionary implications for early Eurasian cricetids // Journal of Vertebrate Paleontology. V. 33. № 1. P. 185–194.
  41. Markova E., Bobretsov A., Borodin A., Rakitin S., Sibiryakov P., Smirnov N., Yalkovskaya L., Zykov S., 2020. The effects of population bottlenecks on dental phenotype in extant arvicoline rodents: implications for studies of the Quaternary fossil record // Quaternary Science Reviews. V. 228. 106045.
  42. Markova E.A., Malygin V.M., Montuire S., Nadachowski A., Quéré J.-P., Ochman K., 2010. Dental variation in sibling species Microtus arvalis and M. rossiaemeridionalis (Arvicolinae, Rodentia): between-species comparisons and geography of morphotype dental patterns // Journal of Mammalian Evolution. V. 17. P. 121–139.
  43. Markova E., Smirnov N., 2018. Phenotypic diversity arising from a limited number of founders: A study of dental variation in laboratory colonies of collared lemmings, Dicrostonyx (Rodentia: Arvicolinae) // Biological Journal of the Linnean Society. V. 125. P. 777–793.
  44. Markova E.A., Sibiryakov P.A., Kartavtseva I.V., Lapin A.S., Morozkina A.V., Petukhov V.A., Tiunov M.P., Starikov V.P., 2019. What can an invasive species tell us about evolution? A study of dental variation in disjunctive populations of Microtus rossiaemeridionalis (Arvicolinae, Rodentia) // Journal of Mammalian Evolution. V. 26 (2). P. 267–282.
  45. Nadachowski A., 1982. Late quaternary rodents of Poland with special reference to morphotype dentition analysis of voles. Warszawa; Krakow: Panstwowe wydawnictwo naukowe. 110 p.
  46. Nekrutenko A., Makova K.D., Chesser R.K., Baker R.J., 1999. Representational difference analysis to distinguish cryptic species // Mol. Ecol. V. 8. P. 1235–1237.
  47. Pantalacci S., Chaumot A., Benoît G., Sadier A., Delsuc F., Douzery E.J.P., Laudet V., 2008. Conserved Features and Evolutionary Shifts of the EDA Signaling Pathway Involved in Vertebrate Skin Appendage Development // Molecular Biology and Evolution. V. 25. № 5. P. 912–928.
  48. Pavlova S.V., Tchabovsky A.V., 2011. Presence of the 54-chromosome common vole (Mammalia) on Olkhon Island (Lake Baikal, East Siberia, Russia), and the occurrence of an unusual X-chromosome variant // Comparative Cytogenetics. V. 5. № 5. P. 433–440.
  49. Reig O.A., 1977. A proposed unified nomenclature for the enameled components of the molar teeth of the Cricetidae (Rodentia) // Journal of Zoology. V. 181. P. 227–241.
  50. Rörig G., Börner C., 1905. Studien über das Gebiss mitteleuropäischer recenter Mäuse // Arbeit aus der Kaiserlichen Biologischen Anstalt für Land- und Forstwirtschaft. Berlin: Paul Parey-Springer. V. 5. № 2. P. 35–96.
  51. Richardson D.M., Riccardi A., 2013. Misleading criticisms of invasion science: a field guide // Diversity and Distributions. V. 19. P. 1461–1467.
  52. Rodrigues H.G., Renaud S., Charles C., Poul Y., Solé F., Aguilar J.-P., Michaux J., Tafforeau P., Headon D., Jernvall J., Viriot L., 2013. Roles of dental development and adaptation in rodent evolution // Nature Communications. V. 4. P. 2504.
  53. Seppala M., Fraser G.J., Birjandi A.A., Xavier G.M., Cobourne M.T., 2017. Sonic hedgehog signaling and development of the dentition // Journal of Developmental Biology. V. 5. № 2. P. 6.
  54. Sherpa S., Després L., 2021. The evolutionary dynamics of biological invasions: A multi-approach perspective // Evolutionary applications. V. 14 (6). P. 1463–1484.
  55. Swaegers J., Mergeay J., Therry L., Larmuseau M.H.D., Bonte D., Stoks R., 2013. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly // Heredity. V. 111. P. 422–429.
  56. Van Der Meulen A.J., 1973. Middle Pleistocene smaller mammals from the Monte Pegalia (Orvieto, Italy), with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia) // Quaternaria. V. 17. P. 1–144.
  57. Wellcome Sanger Institute, Arvicola amphibius genome assembly mArvAmp1.2, 2021. [Электронный ресурс]. Режим доступа: https://www.ncbi.nlm.nih.gov/assembly/GCF_903992535.2. Дата обновления: 15.05.2021. Дата последнего доступа: 25.04.2023.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (571KB)
4.

Download (422KB)
5.

Download (3MB)
6.

Download (5MB)
7.

Download (2MB)

Copyright (c) 2023 Е.А. Маркова, С.А. Борисов, С.В. Зыков, П.А. Сибиряков, Л.Э. Ялковская, С.В. Булычева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies