ASSOCIATIVE LEARNING AND MEMORY IN TRICHOGRAMMA TELENGAI (HYMENOPTERA, TRICHOGRAMMATIDAE)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Miniaturization constrains insects with the task of preserving vital body functions in spite of significant reductions in body size. The effects of miniaturization on the functioning of the insect nervous system were investigated in the parasitoid Trichogramma telengai. Despite a decreased number of neurons and their volume, T. telengai demonstrated the ability for associative learning and memory retention for up to 6 h after training. Our thermal setup, in which we trained and tested the microinsects, based on the Morris water maze principle makes it possible to compare the associative learning abilities of animals from different taxonomic groups. Our data expand the understanding of the effects of miniaturization on the cognitive abilities of animals and will allow us to determine which structural factors limit the minimum size of the functional insect brain.

About the authors

M. A. Fedorova

Department of Entomology, Faculty of Biology, Lomonosov Moscow State University

Author for correspondence.
Email: mariafedorova1997@gmail.com
Russia, 119234, Moscow

S. E. Farisenkov

Department of Entomology, Faculty of Biology, Lomonosov Moscow State University

Email: mariafedorova1997@gmail.com
Russia, 119234, Moscow

A. V. Timokhov

Department of Entomology, Faculty of Biology, Lomonosov Moscow State University

Email: mariafedorova1997@gmail.com
Russia, 119234, Moscow

A. A. Polilov

Department of Entomology, Faculty of Biology, Lomonosov Moscow State University

Email: mariafedorova1997@gmail.com
Russia, 119234, Moscow

References

  1. Макарова А.А., Полилов А.А., 2013. Особенности строения и ультраструктуры головного мозга насекомых, связанные с миниатюризацией. 2. Мельчайшие перепончатокрылые (Hymenoptera, Mymaridae, Trichogrammatidae) // Зоологический журнал. Т. 92. № 6. С. 695–706.
  2. Муровец В.О., Александров А.А., 2020. Особенности влияния мемантина на обучение крыс в водном тесте Морриса // Журнал высшей нервной деятельности. Т. 70. № 1. С. 50–61.
  3. Сорокина А.П., 1987. Биологическое и морфологическое обоснование видовой самостятельности Trichogramma telengai sp. n. (Hymenoptera: Trichogrammatidae) // Энтомологическое обозрение. Т. 1. С. 32–46.
  4. Теленга Н.А., 1959. Таксономическая и экологическая характеристика видов рода Trichogramma (Hymenoptera: Trichogrammatidae) // Научные труды украинского института защиты растений. Т. 8. С. 124–130.
  5. Федорова М.А., Фарисенков C.Э., Тимохов А.В., Полилов А.А., 2022. Ассоциативное обучение и память трипсов // Зоологический журнал. Т. 101. № 8. С. 1–12.
  6. Berg van den M., Duivenvoorde L., Wang G., Tribuhl S., Bukovinszky T., Vet L.E.M., Dicke M., Smid H.M., 2011. Natural variation in learning and memory dynamics studied by artificial selection on learning rate in parasitic wasps. // Animal Behaviour. Vol. 81. № 1. P. 325–333.
  7. Bolstad G.H., Cassara J.A., Márquez E., Hansen T.F., van der Linde K., Houle D., Pélabon C., 2015. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster // Proceedings of the National Academy of Sciences of the United States of America. Vol. 112. № 43. P. 13284–13289.
  8. Chittka L., Niven J., 2009. Are bigger brains better? // Current Biology. Vol. 19. № 21. P. 995–1008.
  9. Farahani H.K., Ashouri A., Goldansaz S.H., Shapiro M.S., Golshani A., Abrun P., 2014. Associative learning and memory duration of Trichogramma brassicae // Progress in Biological Sciences. Vol. 4. № 1. P. 87–96.
  10. Farris S.M., Schulmeister S., 2011. Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects // Proceedings of the Royal Society B: Biological Sciences. Vol. 278. № 1707. P. 940–951.
  11. Fischer S., Lu Z., Meinertzhagen I.A., 2018. From two to three dimensions: the importance of the third dimension for evaluating the limits to neuronal miniaturization in insects // Journal of Comparative Neurology. Vol. 526. P. 653–662.
  12. Fischer S., Lu Z., Meinertzhagen I.A., 2019. Three-dimensional ultrastructural organization of the ommatidium of the minute parasitoid wasp Trichogramma evanescens // Arthropod Structure and Development. Vol. 48. P. 35–48.
  13. Hoedjes K.M., Kruidhof H.M., Huigens M.E., Dicke M., Vet L.E.M., Smid H.M., 2011. Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience // Proceedings of the Royal Society B: Biological Sciences. Vol. 278. P. 889–897.
  14. Huigens M.E., Pashalidou F.G., Qian M., Bukovinszky T., Smid H.M., van Loon J.J.A., Dicke M., Fatouros N.E., 2009. Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac // PNAS. Vol. 106. № 3. P. 820–825.
  15. Kaiser L., Pérez-Maluf R., Sandoz J.C., Pham-Delècue M.H., 2003. Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid // Animal Behaviour. Vol. 66. № 6. P. 1077–1084.
  16. Keasar T., Ney-Nifle M., Mangel M., 2000. Evidence for learning of visual host-associated cues in the parasitoid wasp Trichogramma thalense // Israel Journal of Zoology. Vol. 46. № 3. P. 243–247.
  17. Kruidhof H.M., Pashalidou F.G., Fatouros N.E., Figueroa I.A., Vet L.E.M., Smid H.M., Huigens M.E., 2012. Reward value determines memory consolidation in parasitic wasps // PLoS ONE. Vol. 7. № 8. P. 1–10.
  18. Lagasse F., Moreno C., Preat T., Mery F., 2012. Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster // Proceedings of the Royal Society B: Biological Sciences. Vol. 279. № 1744. P. 4015–4023.
  19. Makarova A.A., Veko E.N., Polilov A.A., 2021. Metamorphosis of the central nervous system of Trichogramma telengai (Hymenoptera: Trichogrammatidae) // Arthropod Structure and Development. Vol. 60. № 101005.
  20. Makarova A.A., Polilov A., Fischer S., 2015. Comparative morphological analysis of compound eye miniaturization in minute hymenoptera // Arthropod Structure and Development. Vol. 44. № 1. P. 21–32.
  21. Müller C., Collatz J., Wieland R., Steidle J.L.M., 2006. Associative learning and memory duration in the parasitic wasp Lariophagus distinguendus // Animal Biology. Vol. 56. № 2. P. 221–232.
  22. Ofstad T.A., Zuker C.S., Reiser M.B., 2011. Visual place learning in Drosophila melanogaster // Nature. Vol. 474. № 7350. P. 204–207.
  23. Schurmann D., Collatz J., Hagenbucher S., Ruther J., Steidle J.L.M., 2009. Olfactory host finding, intermediate memory and its potential ecological adaptation in Nasonia vitripennis // Naturwissenschaften. Vol. 96. № 3. P. 383–391.
  24. Tully T., Preat T., Boynton S.C., del Vecchio M., 1994. Genetic dissection of consolidated memory in Drosophila // Cell. Vol. 79. № 1. P. 35–47.
  25. Wessnitzer J., Mangan M., Webb B., 2008. Place memory in crickets // Proceedings of the Royal Society B: Biological Sciences. Vol. 275. № 1637. P. 915–921.
  26. van der Woude E., Huigens M.E., Smid H.M., 2018. Differential effects of brain size on memory performance in parasitic wasps // Animal Behaviour. Vol. 141. P. 57–66.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (687KB)
3.

Download (259KB)
4.

Download (126KB)
5.

Download (98KB)

Copyright (c) 2023 М.А. Федорова, С.Э. Фарисенков, А.В. Тимохов, А.А. Полилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies