SPIDERS (ARANEI) OF THE PERIGLACIAL LANDSCAPES OF THE TSEI GORGE, NORTH OSSETIA-ALANIA, CAUCASUS, RUSSIA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the framework of a comprehensive study of arthropods taking part in the primary successions of the periglacial landscapes in the North Caucasus, spiders were collected from 10 sites of different ages (ranging from 1 to 170 years) in the upper reaches of the Tsei Gorge at altitudes of 2071 to 2336 m a.s.l. As the glacier retreats, meadow communities are formed at the site of bare near-glacial areas, these being first replaced by shrubs in areas aged 10–14 years, and then by forest communities on 30–35-year old surfaces. Spiders appear almost immediately after the retreat of the glacier, and representatives of at least three families are found already in the area that was freed from ice just a year ago. This pioneer complex consists not only of representatives of the alpine fauna, but it also includes species without pronounced altitudinal preferences. However, the primary assemblage is short-lived, being completely replaced in 10–15 years, especially sharp rearrangements of the spider populations being noted during the transition from meadow to the forest stage of succession. In 30–35 years following the retreat of the glacier, the spider complexes reach a level of diversity that is quite comparable with that in developed communities of the mountain forest belt. A comparison of the periglacial assemblages of Caucasian spiders with those formed under similar conditions in the southern and northern mountains of Western Europe indicates a profound regional specificity not only at the level of species, but even at the level of families.

About the authors

A. B. Babenko

The Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: lsdc@mail.ru
Russia, 119071, Moscow

A. V. Ponomarev

Federal Research Center of the Southern Scientific Center,
Russian Academy of Sciences

Author for correspondence.
Email: ponomarev1952@mail.ru
Russia, 344006, Rostov-on-Don

References

  1. Баканов М.Ю., Пономарев А.В., 2016. Высотно-поясное распределение околоводных пауков рода Pardosa (Aranei: Lycosidae) на территории республики Северная Осетия-Алания // Проблемы водной энтомологии России и сопредельных стран. Материалы VI Всерос. симпозиума по амфибиотическим и водным насекомым, посвященного памяти Л.А. Жильцовой. Владикавказ: Северо-Осетинский государственный университет им. К.Л. Хетагурова. С. 13–18.
  2. Баканов М.Ю., Пономарев А.В., 2020. Высотно-поясное распределение околоводных пауков-волков (Aranei: Lycosidae) на территории республики Северная Осетия-Алания // Наука юга России. Т. 16. № 3. С. 69–75. https://doi.org/10.7868/S25000640200308
  3. Бушуева И.С., 2013. Колебания ледников на Центральном и Западном Кавказе по картографическим, историческим и биоиндикационным данным за последние 200 лет. Автореф. дис. … канд. геогр. наук. Москва: Институт географии РАН. 24 с.
  4. Бушуева И.С., Соломина О.Н., 2012. Колебания ледника Кашкаташ за последние четыре столетия по картографическим, дендрохронологическим и лихенометрическим данным // Лед и снег. № 2 (118). С. 121–130.
  5. Еськов К.Ю., 1985. Пауки тундровой зоны СССР // Труды Зоологического института АН СССР. Т. 139. С. 121–128.
  6. Есюнин С.Л., 1999. Структура и разнообразие населения пауков зональных и горных тундр Урала // Зоологический журнал. Т. 78. № 6. С. 654–671.
  7. Золотарев Е.А., 2009. Эволюция оледенения Эльбруса. Москва: Научный мир. 238 с.
  8. Марусик Ю.М., 2007. Пауки (Arachnida: Aranei) азиатской части России: таксономия, фауна, зоогеография. Автореф. дис. … докт. биол. наук. Санкт-Петербург. 43 с.
  9. Марусик Ю.М., Еськов К.Ю., 2009. Пауки тундровой зоны России // Бабенко А.Б., Матвеева Н.В., Макарова О.Л., Головач С.И. (ред.). Виды и сообщества в экстремальных условиях. Москва–София: Товарищество научных изданий КМК и PenSoft Pbl. С. 92–123.
  10. Нехаева А.А., 2018. Фауна и сезонная активность пауков (Arachnida, Aranei) Кольского полуострова. Автореф. дис. … канд. биол. наук. Москва. 23 с.
  11. Пономарев А.В., Kомаров Ю.Е., 2013. Предварительное обобщение материалов по фауне пауков (Aranei) Республики Северная Осетия-Алания // Труды Северо-Осетинского государственного заповедника. № 2. С. 76–111.
  12. Пономарев А.В., Kомаров Ю.Е., 2015. Пауки (Aranei) Республики Южная Осетия // Юг России: экология, развитие. Т. 10. № 11. С. 116–147.
  13. Пономарев А.В., Шматко В.Ю., 2019. Обзор пауков рода Zelotes Gistel, 1848 группы subterraneus (Aranei: Gnaphosidae) Кавказа и Предкавказья // Кавказский энтомологический бюллетень. Т. 15. № 1. С. 3–22.
  14. Пономарев А.В., Шматко В.Ю., 2020. Обзор пауков родов Trachyzeloes Lohmander, 1944 и Marinarozelotes Ponomarev, gen. n. (Aranei: Gnaphosidae) юго-востока Русской равнины и Кавказа // Кавказский энтомологический бюллетень. Т. 16. № 1. С. 125–139. https://doi.org/10.23885/181433262020161-125139
  15. Пономарев А.В., Алексеев С.К., Комаров Ю.Е., Шматко В.Ю., 2021. Пауки (Aranei) долины Терека в Моздокском районе Республики Северная Осетия–Алания, Россия // Кавказский энтомологический бюллетень. Т. 17. № 2. С. 351–374. https://doi.org/10.23885/181433262021172-351374
  16. Пономарёв А.В., Шматко В.Ю., 2022. Обзор пауков рода Tegenaria Latreille, 1804 (Aranei: Agelenidae) российского Кавказа и Предкавказья. I. Виды, близкие к Tegenaria abchasica Charitonov, 1941 // Кавказский энтомологический бюллетень. Т. 18. № 2. С. 211–221. https://doi.org/10.23885/181433262022182-211221
  17. Соломина О.Н., 1999. Горное оледенение Северной Евразии в голоцене. Москва: Научный мир. 263 с.
  18. Соломина O.H., Бушуева И.С., Кудерина T.M., Мацковский В.В., Кудиков А.В., 2012. К голоценовой истории ледника Уллукам // Лед и снег. № 1 (117). С. 85–94.
  19. Триликаускас Л.А., Kомаров Ю.Е., 2014. К фауне пауков (Arachnida: Aranei) Северной и Южной Осетии // Человек и природа – взаимодействие на особо охраняемых природных территориях. Материалы межрегиональной научно-практической конференции, посвященной 25-летию создания Шорского национального парка. Горно-Алтайск. С. 149–162.
  20. Alfredsen A.N., 2010. Primary succession, habitat preferences and species assemblages of carabid beetles in front of the retreating glacier Midtdalsbreen, Finse, southern Norway. Master thesis, University of Bergen. 83 p.
  21. Bernasconi M.G., Borgatti M.S., Tognetti M., Valle B., Caccianiga M., Casarotto C., Ballarin F., Gobbi M., 2019. Checklist Ragionata Della Flora e Degli Artropodi (Coleoptera: Carabidae e Arachnida: Aranae) dei Ghiacciai Centrale e Occidentale del Sorapiss (Dolomiti d’Ampezzo) // Frammenti Conoscere e Tutelare la Natura Bellunese. № 9. P. 49–65.
  22. Bråten A.T., Flø D., 2009. Primary succession of arthropods (Coleoptera and Araneae) on a newly exposed glacier foreland at Finse, southern Norway. Master thesis, Norwegian University of Life Sciences. 85 p.
  23. Bråten A.T., Flø D., Hågvar S., Hanssen O., Mong C.E., Aakra K., 2012. Primary succession of surface active beetles and spiders in an alpine glacier foreland, central south Norway // Arctic, Antarctic, and Alpine Research. Vol. 44. № 1. P. 2–15. https://doi.org/10.1657/1938-4246-44.1.2
  24. Buchar J., Thaler K., 1998. Lycosidae from the high alpine zone of the Caucasus range, with comparative remarks on the fauna of the Alps (Arachnida: Araneae) // Linzer Biologische Beiträge. Vol. 30. № 2. P. 705–717.
  25. Chapin F.S., Walker L.R., Fastie C.L., Sharman L.C., 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska // Ecological Monographs. Vol. 64. № 2. P. 149–175. https://doi.org/10.2307/2937039
  26. Elven R., 1978. Association analysis of moraine vegetation at the glacier Hardangerjøkulen, Finse, South Norway // Norwegian Journal of Botany. Vol. 25. № 3. P. 171–191.
  27. Elven R., 1980. The Omnsbreen glacier nunataks – A case study of plant immigration // Norwegian Journal of Botany. Vol. 27. № 1. P. 1–16.
  28. Elven R., Ryvarden L., 1975. Dispersal and primary establishment of vegetation // Wielgolaski F.E. (Ed.) Fennoscandian Tundra Ecosystems. Ecological Studies. Vol. 16. Berlin, Heidelberg: Springer. P. 81–85. https://doi.org/10.1007/978-3-642-80937-8_8
  29. Franzén M., Dieker P., 2014. The influence of terrain age and altitude on the arthropod communities found on recently deglaciated terrain // Current Zoology. Vol. 60. № 2. P. 203–220. https://doi.org/10.1093/czoolo/60.2.203
  30. Gildado J.D., Rusterholz H., Baur B., 2021. Millipedes step up: species extend their upper elevational limit in the Alps in response to climate warming // Insect Conservation and Diversity. Vol. 15. № 1. P. 61–72. https://doi.org/10.1111/icad.12535
  31. Gobbi M., De Bernardi F., Pelfini M., Rossaro B., Brandmayr P., 2006. Epigean arthropod succession along a 154-year glacier foreland chronosequence in the Forni Valley (Central Italian Alps) // Arctic, Antarctic, and Alpine Research. Vol. 38. № 3. P. 357–362. https://doi.org/10.1657/1523-0430(2006)38[357:EAS-AAY]2.0.CO;2
  32. Gobbi M., Fontaneto D., De Bernardi F., 2006a. Influence of climate changes on animal communities in space and time: The case of spider assemblages along an alpine glacier foreland // Global Change Biology. Vol. 12. № 10. P. 1985–1992. https://doi.org/10.1111/j.1365-2486.2006.01236.x
  33. Gobbi M., Ballarin F., Brambilla M., Compostella C., Isaia M., Losapio G., Maffioletti C., Seppi R., Tampucci D., Caccianiga M., 2017. Life in harsh environments: Carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland // Ecological Entomology. Vol. 42. P. 838–848. https://doi.org/10.1111/een.12456
  34. Golovatch S.I., Antipova M.D., 2022. The millipedes (Diplopoda) of the Republic of North Ossetia–Alania, northern Caucasus, Russia, with special reference to the fauna of the North Ossetian Nature Reserve // Arthropoda Selecta. Vol. 31. № 2. P. 133–142. https://doi.org/10.15298/arthsel.31.2.01
  35. Hågvar S., 2010. Primary succession of springtails (Collembola) in a Norwegian glacier foreland // Arctic, Antarctic, and Alpine Research. Vol. 42. № 4. P. 422–429. https://doi.org/10.1657/1938-4246-42.4.422
  36. Hågvar S., 2012. Primary succession in glacier forelands: How small animals conquer new land around melting glaciers // Young S.S., Silvern S.E. (Eds). International Perspectives on Global Environmental Change. London: Intech Open Access Publisher. P. 151–172. Available from www.intechopen.com (accessed on 15 October 2022). https://doi.org/10.5772/26536
  37. Hågvar S., Solhøy T., Mong C., 2009. Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on Oribatid species // Arctic, Antarctic, and Alpine Research. Vol. 41. № 2. P. 219–227. https://doi.org/10.1657/1938-4246-41.2.219
  38. Hågvar S., Gobbi M., Kaufmann R., Ingimarsdóttir M., Caccianiga M., Valle B., Pantini P., Fanciulli P.P., Vater A., 2020. Ecosystem Birth near Melting Glaciers: A Review on the Pioneer Role of Ground-Dwelling Arthropods // Insects. Vol. 11. № 9. P. 644. https://doi.org/10.3390/insects11090644
  39. Hodkinson I.D., Coulson S.J., Harrison J., Webb N.R., 2001. What a wonderful web they weave: Spiders, nutrient capture and early ecosystem development in the high Arctic—Some counter-intuitive ideas on community assembly // Oikos. Vol. 95. № 2. P. 349–352. https://doi.org/10.1034/j.1600-0706.2001.950217.x
  40. Hodkinson I.D., Coulson S.J., Webb N.R., 2004. Invertebrate community assembly along proglacial chronosequences in the high Arctic // Journal of Animal Ecology. Vol. 73. № 3. P. 556–568.
  41. Ingimarsdóttir M., Caruso T., Ripa J., Magnúsdottir O.B., Migliorini M., Hedlund K., 2012. Primary assembly of soil communities: Disentangling the effect of dispersal and local environment // Oecologia. Vol. 170. P. 745–754. https://doi.org/10.1007/s00442-012-2334-8
  42. Ingimarsdóttir M., Ripa J., Hedlund K., 2013. Corridor or drift fence? The role of medial moraines for fly dispersal over glacier // Polar Biology. Vol. 36. P. 925–932. https://doi.org/10.1007/s00300-013-1316-6
  43. Janetschek H., 1949. Tierische Successionen auf Hochalpinem Neuland. Nach Untersuchungen am Hintereis-, Niederjoch- und Gepatschferner in den Ötztaler Alpen // Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck. Vol. 48/49. 215 p. Available online: https://www.zobodat.at/pdf/BERI_48_49_0001-0215.pdf (accessed on 15 October 2022).
  44. Jomelli V., Khodri M., Favier V., Brunstein D., Ledru M.-P., Wagnon P., Blard P.-H., Sicar J.-E., Braucher R., Grancher D. et al., 2011. Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming // Nature. Vol. 474 (7350). P. 196–199. https://doi.org/10.1038/nature10150
  45. Kaufmann R., 2001. Invertebrate succession on an Alpine glacier foreland // Ecology. Vol. 82. № 8. P. 2261–2278. https://doi.org/10.1890/0012-9658(2001)082[2261: ISOAAG]2.0.CO;2
  46. Kaufmann R., 2002. Glacier foreland colonisation: distinguishing between short-term and long-term effects of climate change // Oecologia. Vol. 130. № 3. P. 470–475. https://doi.org/10.1007/s00442-001-0815-2
  47. Kaufmann R., Fuchs M., Gosterxeier N., 2002. The soil fauna of an alpine glacier foreland: Colonization and succession // Arctic, Antarctic, and Alpine Research. Vol. 34. № 3. P. 242–250. https://doi.org/10.1080/15230430.2002.12003491
  48. Kaufmann R., Raffl C., 2002. Diversity in primary succession: The chronosequence of a glacier foreland // Körner C., Spehn E.M. (Eds). Global Mountain Biodiversity: A Global Assessment. London: Parthenon. P. 177–190.
  49. Makarchenko E.A., Semenchenko A.A., Palatov D.M., 2022. Chironomids are commensals of the larvae and pupae of Blephariceridae and Simuliidae from the North Caucasus (Diptera: Chironomidae: Orthocladiinae) // Zootaxa. Vol. 5141. № 4. P. 373–384. https://doi.org/10.11646/zootaxa.5141.4.5
  50. Makarchenko E.A., Semenchenko A.A., Palatov D.M., 2022a. Redescription of the caucasian endemic Diamesa caucasica Kownacki et Kownacka (Diptera: Chironomidae: Diamesinae) // Zootaxa. Vol. 5159. № 3. P. 445–450. https://doi.org/10.11646/zootaxa.5159.3.9
  51. Malcomb N.L., Wiles G.C., 2013. Tree-ring-based reconstructions of North American glacier mass balance through the Little Ice Age – Contemporary warming transition // Quaternary Research. Vol. 79. № 2. P. 123–137. https://doi.org/10.1016/j.yqres.2012.11.005
  52. Marusik Y.M., Koponen S., Makarova O.L., 2016. A Survey of Spiders (Araneae) Collected on the Arctic Island of Dolgiy (69°12′ N), Barents Sea // Arachnology. Vol. 17. № 1. P. 10–24. https://doi.org/10.13156/arac.2006.17.1.10
  53. Moreau M., Laffly D., Joly D., Brossard T., 2005. Analysis of plant colonization on an arctic moraine since the end of the Little Ice Age using remotely sensed data and a Bayesian approach // Remote Sensing of Environment. Vol. 99. № 3. P. 244–253. https://doi.org/10.1016/j.rse.2005.03.017
  54. Moret P., De Los Angeles Arauz M., Gobbi M., Barragan A., 2016. Climate warming effects in the tropical Andes first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador // Insect Conservation and Diversity Vol. 9. № 4. P. 342–350. https://doi.org/10.1111/icad.12173
  55. Oerlemans J., 2005. Extracting a climate signal from 169 glacier records // Science. Vol. 308(5722). P. 675–677. https://doi.org/10.1126/science.1107046
  56. Panza R., Gobbi M., 2022. Areal contraction, upward shift and habitat fragmentation in the cold-adapted ground beetle Nebria germarii Heer, 1837 in the Brenta Dolomites, Italy // Rendiconti Lincei. Scienze Fisiche e Naturali. Vol. 33. P. 923–931. https://doi.org/10.1007/s12210-022-01112-6
  57. Raffl C., 1999. Vegetationsgradienten und Sukzessionsmuster in einem Gletschervorfeld in den Zentralalpen (Ötztaler Alpen, Tirol). Diploma Thesis, University of Innsbruck. 102 p.
  58. Raffl C., Mallaun M., Mayer R., Erschbamer B., 2006. Vegetation succession pattern and diversity changes in a glacier valley, central Alps, Austria // Arctic, Antarctic, and Alpine Research. Vol. 38. № 3. P. 421–428. https://doi.org/10.1657/1523-0430(2006)38[421:VSP-ADC]2.0.CO;2
  59. Seniczak A., Solhøy T., Seniczak S., 2006. Oribatid mites (Acari: Oribatida) in the glacier foreland at Hardangerjøkulen (Norway) // Biological Letters. Vol. 43. № 2. P. 231–235.
  60. Skubala P., Gulvik M., 2005. Pioneer oribatid mite communities (Acari, Oribatida) in newly exposed natural (glacier foreland) and anthropogenic (post-industrial dump) habitats // Polish Journal of Ecology. Vol. 53. № 3. P. 395–407.
  61. Sint D., Kaufmann R., Mayer R., Traugott M., 2019. Resolving the predator first paradox: Arthropod predator food webs in pioneer sites of glacier forelands // Molecular Ecology. Vol. 28. № 2. P. 336–347. https://doi.org/10.1111/mec.14839
  62. Tampucci D., Gobbi M., Boracchi P., Cabrini E., Compostella C., Mangili F., Marano G., Pantini P., Caccianiga M., 2015. Plant and arthropod colonisation of a glacier foreland in a peripheral mountain range // Biodiversity. Vol. 16. № 4. P. 213–223. https://doi.org/10.1080/14888386.2015.1117990
  63. Vater A.E., 2006. Invertebrate and arachnid succession on selected glacier forelands in southern Norway. Ph. D. Thesis. Swansea, UK: University of Wales. 372 p.
  64. Zingerle V., 1999. Spider and harvestman communities along a glaciation transect in the Italian Dolomites // Journal of Arachnology. Vol. 27. № 1. P. 222–228.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (5MB)
4.

Download (6MB)
5.

Download (5MB)
6.

Download (41KB)

Copyright (c) 2023 А.Б. Бабенко, А.В. Пономарев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies