Studying task-modulated functional connectivity using functional magnetic resonance imaging
- Autores: Masharipov R.S.1, Didour M.D.1, Cherednichenko D.V.1, Kireev M.V.1
-
Afiliações:
- N.P. Bechtereva Institute of the Human Brain, RAS
- Edição: Volume 75, Nº 5 (2025)
- Páginas: 530-552
- Seção: ОБЗОРЫ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0044-4677/article/view/320678
- DOI: https://doi.org/10.31857/S0044467725050037
- ID: 320678
Citar
Resumo
Over the past decade, the main focus in functional magnetic resonance imaging (fMRI) studies on the structural and functional organization of the human brain has shifted from functional segregation, i. e., the functional specialization of individual brain structures, to functional integration, i. e., the collective activity of the brain systems. Currently, the most common type of fMRI study is the resting-state functional connectivity studies, due to the relative ease of obtaining and statistically analyzing data. At the same time, growing attention is paid to dynamic changes of functional connections during task performance. In this review, we briefly describe the nature of functional connectivity measured using fMRI, review existing task-modulated functional connectivity methods, and provide practical recommendations for choosing a statistical analysis method and planning the fMRI task design. In conclusion, we will discuss the significance and prospects of studying task-modulated functional connectivity for fundamental research into the systemic organization of the human brain in health and pathology.
Palavras-chave
Sobre autores
R. Masharipov
N.P. Bechtereva Institute of the Human Brain, RAS
Email: masharipov@ihb.spb.ru
Saint-Petersburg, Russia
M. Didour
N.P. Bechtereva Institute of the Human Brain, RAS
Email: masharipov@ihb.spb.ru
Saint-Petersburg, Russia
D. Cherednichenko
N.P. Bechtereva Institute of the Human Brain, RAS
Email: masharipov@ihb.spb.ru
Saint-Petersburg, Russia
M. Kireev
N.P. Bechtereva Institute of the Human Brain, RAS
Autor responsável pela correspondência
Email: masharipov@ihb.spb.ru
Saint-Petersburg, Russia
Bibliografia
- Анохин К.В. Когнитом: в поисках фундаментальной нейронаучной теории сознания. Журнал высшей нервной деятельности им И.П. Павлова. 2021. 71 (1): 39–71. https://doi.org/10.31857/s0044467721010032
- Бернштейн Н.А. Современные искания и физиологии нервного процесса. 1935. Под ред. И.М. Фейгенберга. И.Е. Сироткиной. М.: Смысл, 2003. 330 с.
- Бехтерев В.М. Проводящие пути спинного и головного мозга: Руководство к изучению внутренних связей мозга. Ч. 1. [Соч.] В.М. Бехтерев, 3-е изд., испр. и доп. СПб.: Издательство Риккера, 1898. 496 с.
- Бехтерева Н.П., Бондарчук А.Н. Об оптимизации этапов хирургического лечения гиперкинезов. Вопр. нейрохир. 1968. № 3. С. 39–44.
- Бехтерева Н.П., Камбарова Д.К., Поздеев В.К. Устойчивое патологическое состояние при болезнях мозга. Л.: Медицина, 1978. 240 с.
- Бехтерева Н.П. Здоровый и больной мозг человека. Академия наук CССР. Отделение физиологии. Л.: Наука, 1980. 208 с.
- Киреев М.В. Системная организация работы мозга при обеспечении целенаправленного поведения: дисс. … док. биол. наук Киреев Максим Владимирович. Санкт-Петербург, 2017. 304 с.
- Лурия А.Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. Москва: Издательство Московского университета, 1962. 432 с.
- Ухтомский А.А. Избранные труды. Л.: “Наука”, Ленинградское отделение, 1978. С. 175.
- Anokhin P.K. Nodular Mechanism of Functional Systems as a Self-regulating Apparatus. Progress in Brain Research. 1968. 22: 230–251. https://doi.org/10.1016/s0079-6123(08)63509-8
- Anokhin P.K. Functional system as the basis for investigation of the embryonic development of functions. VI. Congr. Soviet Physiol., Tbilisi, U.S.S.R., 1937.
- Argyropoulou M.I., Xydis V.G., Astrakas L.G. Functional connectivity of the pediatric brain. Neuroradiology. 2024. 66: 2071–2082. https://doi.org/10.1007/s00234-024-03453-5
- Badillo S., Vincent T., Ciuciu P. Group-level impacts of within- and between-subject hemodynamic variability in fMRI. NeuroImage. 2013. 82: 433–448. https://doi.org/10.1016/j.neuroimage.2013.05.100
- Baumann A.W., Schäfer T.A., Ruge H. Instructional load induces functional connectivity changes linked to task automaticity and mnemonic preference. NeuroImage. 2023. 277: 120262. https://doi.org/10.1016/j.neuroimage.2023.120262
- Bechtereva N.P. The Neurophysiological Aspects OJ Human Mental Activity. Oxford Univ. Press, New York, 1978. 181 p.
- Biswal B.B., Mennes M., Zuo X.N. et al. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences. 2010. 107: 4734–4739. https://doi.org/10.1073/pnas.091185510
- Biswal B.B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine. 1995. 34: 537–541. https://doi.org/10.1002/mrm.1910340409
- Bolt T., Nomi J.S., Rubinov M., Uddin L.Q. Correspondence between evoked and intrinsic functional brain network configurations. Human Brain Mapping. 2017. 38 (4): 1992–2007. https://doi.org/10.1002/hbm.23500
- Bonett D.G., Wright T.A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika. 2000. 65: 23–28. https://doi.org/10.1007/BF02294183
- Brosch M., Budinger E., Scheich, H. Stimulus-related gamma oscillations in primate auditory cortex. J. Neurophysiol. 2002. 87: 2715–2725. https://doi.org/10.1152/jn.2002.87.6.2715
- Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience. 2009. 10 (3): 186–198. https://doi.org/10.1038/nrn2575
- Buxton R.B. Dynamic models of BOLD contrast. NeuroImage. 2012. 62 (2): 953–961. https://doi.org/10.1016/j.neuroimage.2012.01.012
- Cash R.F.H., Müller V.I., Fitzgerald P.B., Eickhoff S.B., Zalesky A. Altered brain activity in unipolar depression unveiled using connectomics. Nat. Mental Health. 2023. 1: 174–185. https://doi.org/10.1038/s44220-023-00038-8
- Chen G., Taylor P.A., Reynolds R.C., Leibenluft E., Pine D.S., Brotman M.A. et al. BOLD Response is more than just magnitude: Improving detection sensitivity through capturing hemodynamic profiles. NeuroImage. 2023. 277: 120224. https://doi.org/10.1016/j.neuroimage.2023.120224
- Ciric R., Rosen A.F.G., Erus G., Cieslak M., Adebimpe A., Cook P.A. et al. Mitigating head motion artifact in functional connectivity MRI. Nature Protocols. 2018. 13: 2801–2826. https://doi.org/10.1038/s41596-018-0065-y
- Cole M., Ito T., Schultz D., Mill R., Chen R., Cocuzza C. Task activations produce spurious but systematic inflation of task functional connectivity estimates. NeuroImage. 2019. 189: 1–18. https://doi.org/10.1016/j.neuroimage.2018.12.054
- Cole M.W., Ito T., Cocuzza C., Sanchez-Romero R. The functional relevance of Task-State functional connectivity. Journal of Neuroscience. 2021. 41 (12): 2684–2702. https://doi.org/10.1523/jneurosci.1713-20.2021
- Cole M.W., Reynolds J.R., Power J.D., Repovs G., Anticevic A., Braver T.S. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience. 2013. 16 (9): 1348–1355. https://doi.org/10.1038/nn.3470
- Cole M., Bassett D.S., Power J.D., Braver T.S., Petersen S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron. 2014. 83: 238–251. https://doi.org/10.1016/j.neuron.2014.05.014
- Corbetta M., Patel G., Shulman G.L. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008. 58 (3): 306–324. https://doi.org/10.1016/j.neuron.2008.04.017
- Cosío-Guirado R., Tapia-Medina M.G., Kaya C., Peró-Cebollero M., Villuendas-González E.R., Guàrdia-Olmos J. A comprehensive systematic review of fmri studies on brain connectivity in healthy children and adolescents: current insights and future directions. Developmental Cognitive Neuroscience. 2024. 69: 101438. https://doi.org/10.1016/j.dcn.2024.101438
- Coutanche M.N., Thompson-Schill S.L. Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain. Front. Hum. Neurosci. 2013. 7. https://doi.org/10.3389/fnhum.2013.00015
- Crick F., Koch C. A framework for consciousness. Nat Neurosci. 2003. 6: 119–126. https://doi.org/10.1038/nn0203-119
- Deco G., Jirsa V.K., McIntosh A.M., Sporns O., Kötter R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. 2009. 106: 10302–10307. https://doi.org/10.1073/pnas.0901831106
- Di X., Biswal B.B. Toward task connectomics: examining whole-brain task modulated connectivity in different task domains. Cereb. Cortex. 2019. 29: 1572–1583. https://doi.org/10.1093/cercor/bhy055
- Di X., Reynolds R.C., Biswal B.B. Imperfect (de)convolution may introduce spurious psychophysiological interactions and how to avoid it. Human Brain Mapping. 2017. 38 (4): 1723–1740. https://doi.org/10.1002/hbm.23413
- Dobbs D. Fact or phrenology? Scientific American Mind. 2005. 16 (1): 24–31. http://www.jstor.org/stable/24997594
- Dodel S., Golestani N., Pallier C., El Kouby V., Bihan D.L., Poline J. Condition-dependent functional connectivity: syntax networks in bilinguals. Philosophical Transactions of the Royal Society B Biological Sciences. 2005. 360 (1457): 921–935. https://doi.org/10.1098/rstb.2005.1653
- Dominicus L., Van Rijn L., Van Der A.J., Van Der Spek R., Podzimek D., Begemann M. et al. fMRI connectivity as a biomarker of antipsychotic treatment response: A systematic review. NeuroImage Clinical. 2023. 40: 103515. https://doi.org/10.1016/j.nicl.2023.103515
- Dowdle L.T., Ghose G., Chen C.C., Ugurbil K., Yacoub E., Vizioli L. Statistical power or more precise insights into neuro-temporal dynamics? Assessing the benefits of rapid temporal sampling in fMRI. Prog. Neurobiol. 2021. 207: 102171. https://doi.org/10.1016/j.pneurobio.2021.102171
- Drew P.J., Mateo C., Turner K.L., Yu X., Kleinfeld D. Ultra-slow oscillations in FMRI and Resting-State connectivity: neuronal and vascular contributions and technical confounds. Neuron. 2020. 107 (5): 782–804. https://doi.org/10.1016/j.neuron.2020.07.020
- Edde M., Leroux G., Altena E., Chanraud S. Functional brain connectivity changes across the human life span: From fetal development to old age. Journal of Neuroscience Research. 2020. 99 (1): 236–262. https://doi.org/10.1002/jnr.24669
- Ekstrom A.D. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philosophical Transactions of the Royal Society B Biological Sciences. 2020. 376 (1815): 20190634. https://doi.org/10.1098/rstb.2019.0634
- Elam J.S., Glasser M.F., Harms M.P., Sotiropoulos S.N., Andersson J.L., Burgess G.C. et al. The Human Connectome Project: A retrospective. NeuroImage. 2021. 244: 118543. https://doi.org/10.1016/j.neuroimage.2021.118543
- Engel A., Fries P., Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2001. 2: 704–716. https://doi.org/10.1038/35094565
- Farahani F.V., Karwowski W., Lighthall N.R. Application of graph Theory for identifying connectivity patterns in human brain networks: A systematic review. Frontiers in Neuroscience. 2019. 13. https://doi.org/10.3389/fnins.2019.00585
- Fedorenko E., Duncan J., Kanwisher N. Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences. 2013. 110 (41): 16616–16621. https://doi.org/10.1073/pnas.1315235110
- Ferré P., Jarret J., Brambati S.M., Bellec P., Joanette Y. Task-Induced Functional connectivity of picture naming in Healthy aging: the impacts of age and task complexity. Neurobiology of Language. 2020. 1 (2): 161–184. https://doi.org/10.1162/nol_a_00007
- Ferrier D. The functions of the brain. London: Smith, Elder & Co, 1876. 323 p.
- Flourens P. Recherches expérimentales sur les proprétés et les fonctions du système nerveux dans les animaux vertèbres. Paris: Baillière, 1824. 516 p.
- Fornito A., Harrison B.J., Zalesky A., Simons J.S. Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences. 2012. 109: 12788–12793. https://doi.org/10.1073/pnas.1204185109
- Fornito A., Zalesky A., Breakspear M. Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage. 2013. 80: 426–444. https://doi.org/10.1016/j.neuroimage.2013.04.087
- Fornito A. Brain organization: From cells and circuits to systems and networks. In Brown G.G., Crosson B., Haaland K.Y. & King T.Z. (Eds.) APA handbook of neuropsychology: Neuroscience and neuromethods. American Psychological Association, 2023. P. 3–32.
- Fox P.T., Raichle M.E., Mintun M.A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988. 241: 462–464. https://doi.org/10.1126/science.3260686
- Fox M.D., Corbetta M., Snyder A.Z., Vincent J.L., Raichle M.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences. 2006. 103 (26): 10046–10051. https://doi.org/10.1073/pnas.0604187103
- Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences. 2005. 102 (27): 9673–9678. https://doi.org/10.1073/pnas.0504136102
- Frackowiak R.S.J., Jones T., Lenzi G.L., Heather J.D. Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography. Acta Neurologica Scandinavica. 1980. 62 (6): 336–344. https://doi.org/10.1111/j.1600-0404.1980.tb03046.x
- Franzmeier N., Hartmann J., Taylor A.N.W., Araque-Caballero M.Á., Simon-Vermot L., Kambeitz-Ilankovic L. et al. The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alz. Res. Therapy. 2018. 10 (1): 28. https://doi.org/10.1186/s13195-018-0358-y
- Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 2009. 32: 209–224. https://doi.org/10.1146/annurev.neuro.051508.135603
- Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015. 88: 220–235. https://doi.org/10.1016/j.neuron.2015.09.034
- Friston K.J. Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience. 2002. 25 (1): 221–250. https://doi.org/10.1146/annurev.neuro.25.112701.142846
- Friston K.J. Functional and Effective Connectivity: a review. Brain Connectivity. 2011. 1 (1): 13–36. https://doi.org/10.1089/brain.2011.0008
- Friston K.J., Buechel C., Fink G.R., Morris J., Rolls E., Dolan R.J. Psychophysiological and Modulatory Interactions in Neuroimaging. NeuroImage. 1997. 6: 218–229. https://doi.org/10.1006/nimg.1997.0291
- Friston K.J, Harrison L., Penny W. Dynamic causal modelling. NeuroImage. 2003. 19 (4): 1273–1302. https://doi.org/10.1016/s1053-8119(03)00202-7
- Fritsch G., Hitzig E. Uber die elektrische Erregbarkeit des Grosshirns. Archivfuer Anatomie. Physiologie und wissenschaftliche Medicin. 1870. 37: 300e332.
- Fuster J.M. The cognit: A network model of cortical representation. International Journal of Psychophysiology. 2006. 60 (2): 125–132. https://doi.org/10.1016/j.ijpsycho.2005.12.015
- Gall F.J., Spurzheim J.K. Anatomie et Physiologie du Système Nerveux en Général et du Cerveau en Particulier. Paris: Schoell, 1810–1819.
- Gerchen M.F. Kirsch P. Combining task-related activation and connectivity analysis of fMRI data reveals complex modulation of brain networks. Human Brain Mapping. 2017. 38 (11): 5726–5739. https://doi.org/10.1002/hbm.23762
- Gitelman D.R., Penny W.D., Ashburner J., Friston K.J. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage. 2003. 19: 200–207. https://doi.org/10.1016/S1053-8119(03)00058-2
- Goldstein K. Die Lokalisation in der Grosshirnrinde. Handbuch der normalen und pathologischen Physiologie der Leibestlbungen. Knoll und Arnold. Leipzig, 1927.
- Gomez D.E.P., Polimeni J.R., Lewis L.D. The temporal specificity of BOLD fMRI is systematically related to anatomical and vascular features of the human brain. Imaging Neuroscience. 2024. https://doi.org/10.1162/imag_a_00399
- Gordon E.M., Laumann T.O., Gilmore A.W., Newbold D.J., Greene D.J., Berg J.J. et al. Precision functional mapping of individual human brains. Neuron. 2017. 95 (4): 791–807.e7. https://doi.org/10.1016/j.neuron.2017.07.011
- Greene A.S., Gao S., Noble S., Scheinost D., Constable R.T. How Tasks Change Whole-Brain Functional Organization to reveal Brain-Phenotype Relationships. Cell Reports. 2020. 32 (8): 108066. https://doi.org/10.1016/j.celrep.2020.108066
- Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences. 2002. 100 (1): 253–258. https://doi.org/10.1073/pnas.0135058100
- Guedj C., Vuilleumier P. Modulation of pulvinar connectivity with cortical areas in the control of selective visual attention. NeuroImage. 2023. 266: 119832. https://doi.org/10.1016/j.neuroimage.2022.119832
- Haller A. Elementa physiologiae corporis humani. Neapoli, Apud Vincentium Ursinum, 1757–1766.
- Handwerker D.A., Gonzalez-Castillo J., D’Esposito M., Bandettini P.A. The continuing challenge of understanding and modeling hemodynamic variation in fMRI. NeuroImage. 2012. 62 (2): 1017–1023. https://doi.org/10.1016/j.neuroimage.2012.02.015
- Hebb D.O. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley and Sons, 1949. 335 p.
- Henson R.N., Olszowy W., Tsvetanov K.A., Yadav P.S., Zeidman P. Evaluating models of the ageing BOLD response. Human Brain Mapping. 2024. 45 (15). https://doi.org/10.1002/hbm.70043
- Horn A., Fox M.D. Opportunities of connectomic neuromodulation. NeuroImage. 2020. 221: 117180. https://doi.org/10.1016/j.neuroimage.2020.117180
- Hugdahl K., Raichle M.E., Mitra A., Specht K. On the existence of a generalized non-specific task-dependent network. Frontiers in Human Neuroscience. 2015. 9. https://doi.org/10.3389/fnhum.2015.00430
- Jiang R., Scheinost D., Zuo N., Wu J., Qi S., Liang Q. et al. A Neuroimaging Signature of Cognitive Aging from Whole-Brain Functional Connectivity. Advanced Science. 2022. 9 (24). https://doi.org/10.1002/advs.202201621
- Jiang R., Zuo N., Ford J.M., Qi S., Zhi D., Zhuo C. et al. Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. NeuroImage. 2019. 207: 116370. https://doi.org/10.1016/j.neuroimage.2019.116370
- Kataeva G.V., Korotkov A.D., Kireev M.V., Medvedev S.V. Factor structure of regional cerebral blood flow and glucose metabolism rate as a tool to study the default mode of the brain. Human Physiology. 2013. 39 (1): 48–53. https://doi.org/10.1134/s0362119713010052
- Kelso J.S. Synergies: atoms of brain and behavior. Advances in Experimental Medicine and Biology. 2008. 629: 83–91. https://doi.org/10.1007/978-0-387-77064-2_5
- Kireev M., Slioussar N., Korotkov A.D., Chernigovskaya T.V., Medvedev S.V. Changes in functional connectivity within the fronto-temporal brain network induced by regular and irregular Russian verb production. Frontiers in Human Neuroscience. 2015. 9. https://doi.org/10.3389/fnhum.2015.00036
- Kleist K. Gehirnpathologie. Leipzig: Barth, 1934.
- Kriegeskorte N., Mur M., Bandettini P. Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience. 2008. 2. https://doi.org/10.3389/neuro.06.004.2008
- Kwong K.K., Belliveau J.W., Chesler D.A., Goldberg I.E., Weisskoff R.M., Poncelet B.P. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences. 1992. 89 (12). 5675–5679. https://doi.org/10.1073/pnas.89.12.5675
- Lashley K.S. Brain Mechanisms and Intelligence. The University Press, 1929. 222 p.
- Lewis L.D., Setsompop K., Rosen B.R., Polimeni J.R. Fast fMRI can detect oscillatory neural activity in humans. Proceedings of the National Academy of Sciences. 2016. 113 (43). https://doi.org/10.1073/pnas.1608117113
- Li J.M., Acland B.T., Brenner A.S., Bentley W.J. Snyder L.H. Relationships between correlated spikes, oxygen and LFP in the resting-state primate. NeuroImage. 2022. 247: 118728. https://doi.org/10.1016/j.neuroimage.2021.118728
- Liu J., Newsome W.T. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J. Neurosci. 2006. 26: 7779–7790. https://doi.org/10.1523/JNEUROSCI.5052-05.2006
- Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001. 412: 150–157. https://doi.org/10.1038/35084005
- Luo Y., Schulz K.P., Alvarez T.L., Halperin J.M., Li X. Distinct topological properties of cue-evoked attention processing network in persisters and remitters of childhood ADHD. Cortex. 2018. 109: 234–244. https://doi.org/10.1016/j.cortex.2018.09.013
- Luria A.R. Higher cortical functions in man. London: Tavistock, 1966. 529 p.
- Mascali D., Moraschi M., DiNuzzo M., Tommasin S., Fratini M., Gili T. et al. Evaluation of denoising strategies for task-based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks. Human Brain Mapping. 2021. 42: 1805–1828. https://doi.org/10.1002/hbm.25332
- Masharipov R., Knyazeva I., Korotkov A., Cherednichenko D., Kireev M. Comparison of whole-brain task-modulated functional connectivity methods for fMRI task connectomics. Commun. Biol. 2024. 7: 1402. https://doi.org/10.1038/s42003-024-07088-3
- Masson H.L., Pillet I., Boets B., De Beeck H.O. Task-dependent changes in functional connectivity during the observation of social and non-social touch interaction. Cortex. 2020. 125: 73–89. https://doi.org/10.1016/j.cortex.2019.12.011
- Mateo C., Knutsen P.M., Tsai P.S., Shih A.Y., Kleinfeld D. Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “Resting-State” connectivity. Neuron. 2017. 96: 936–948.e3. https://doi.org/10.1016/j.neuron.2017.10.012
- McLaren D.G., Ries M.L., Xu G., Johnson S.C. A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage. 2012. 61: 1277–1286. https://doi.org/10.1016/j.neuroimage.2012.03.068
- Medvedev S.V., Korotkov A.D., Kireev M.V. Hidden nodes of the brain systems. Human Physiology. 2019. 45 (5): 552–556. https://doi.org/10.1134/s0362119719050104
- Medvedev S.V., Masharipov R.S., Korotkov A.D., Kireev M.V. Characteristics of the Involvement of Hidden Nodes in the Activity of Human Brain Systems Revealed on fMRI Data. Hum. Physiol. 2023. 49: 1–11. https://doi.org/10.1134/S0362119722700141
- Melloni L., Mudrik L., Pitts M., Bendtz K., Ferrante O., Gorska U. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS ONE. 2023. 18 (2): e0268577. https://doi.org/10.1371/journal.pone.0268577
- Mill R.D., Ito T., Cole M.W. From connectome to cognition: The search for mechanism in human functional brain networks. NeuroImage. 2017. 160: 124–139. https://doi.org/10.1016/j.neuroimage.2017.01.060
- Moreira J.F.G., McLaughlin K.A., Silvers J.A. Characterizing the network architecture of emotion regulation neurodevelopment. Cerebral Cortex. 2021. 31 (9): 4140–4150. https://doi.org/10.1093/cercor/bhab074
- Mumford J.A., Turner B.L., Ashby F.G., Poldrack R.A. Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. NeuroImage. 2012. 59: 2636–2643. https://doi.org/10.1016/j.neuroimage.2011.08.076
- Munk Н. Zur Physiologie der Grosshirnrinde. Berliner Physiologische Gesellschaft. Marz, 1877.
- Niessing J. Ebisch B., Schmidt K.E., Niessing M., Singer W., Galuske R.A.W. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science. 2005. 309: 948–951. https://doi.org/10.1126/science.1110948
- Nieto-Castañón A. Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. Hilbert Press, 2020. 113 p. https://doi.org/10.56441/hilbertpress.2207.6598
- Nir Y., Fisch L., Mukamel R., Gelbard-Sagiv H., Arieli A., Fried I., Malach R. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 2007. 17: 1275–1285. https://doi.org/10.1016/j.cub.2007.06.066
- O’Reilly J.X., Woolrich M.W., Behrens T.E., Smith S.M., Johansen-Berg H. Tools of the trade: psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience. 2012. 7 (5): 604–609. https://doi.org/10.1093/scan/nss055
- Ogawa S., Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences. 1990. 87 (24): 9868–9872. https://doi.org/10.1073/pnas.87.24.9868
- Ogawa S., Tank D.W., Menon R., Ellermann J.M., Kim S.G., Merkle H., Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences. 1992. 89 (13): 5951–5955. https://doi.org/10.1073/pnas.89.13.5951
- Palmigiano A., Geisel T., Wolf F., Battaglia D. Flexible information routing by transient synchrony. Nat. Neurosci. 2017.20: 1014–1022. https://doi.org/10.1038/nn.4569
- Paz-Alonso P.M., Oliver M., Lerma-Usabiaga G., Caballero-Gaudes C., Quiñones I., Suárez-Coalla P. et al. Neural correlates of phonological, orthographic and semantic reading processing in dyslexia. NeuroImage Clinical. 2018. 20: 433–447. https://doi.org/10.1016/j.nicl.2018.08.018
- Polimeni J.R., Lewis L.D. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Progress in Neurobiology. 2021. 207: 102174. https://doi.org/10.1016/j.pneurobio.2021.102174
- Prince J.S. Charest I., Kurzawski J.W., Pyles J.A., Tarr M.J., Kay K.N. Improving the accuracy of single-trial fMRI response estimates using GLMsingle. eLife. 2022. 11. https://doi.org/10.7554/eLife.77599
- Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proceedings of the National Academy of Sciences. 2001. 98 (2): 676–682. https://doi.org/10.1073/pnas.98.2.676
- Raichle M.E. Two views of brain function. Trends. Cogn. Sci. 2010. 14: 180–190. https://doi.org/10.1016/j.tics.2010.01.008
- Regehr W.G. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 2012. 4: a005702. https://doi.org/10.1101/cshperspect.a005702
- Ren P., Anderson A.J., McDermott K., Baran T.M., Lin F. Cognitive fatigue and cortical-striatal network in old age. Aging. 2019. 11 (8): 2312–2326. https://doi.org/10.18632/aging.101915
- Rissman J., Gazzaley A., D’Esposito M. Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage. 2004. 23: 752–763. https://doi.org/10.1016/j.neuroimage.2004.06.035
- Roger E., De Almeida L.R., Loevenbruck H., Perrone-Bertolotti M., Cousin E., Schwartz J. et al. Unraveling the functional attributes of the language connectome: crucial subnetworks, flexibility and variability. NeuroImage. 2022. 263: 119672. https://doi.org/10.1016/j.neuroimage.2022.119672
- Rokem A., Kay K. Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. Gigascience. 2020. 9 (12): giaa133. https://doi.org/10.1093/gigascience/giaa133
- Saggar M., Uddin L.Q. Pushing the boundaries of psychiatric neuroimaging to ground diagnosis in biology. eNeuro. 2019. 6 (6): ENEURO.0384-19.2019. https://doi.org/10.1523/eneuro.0384-19.2019
- Saggar M., Sporns O., Gonzalez-Castillo J., Bandettini P.A., Carlsson G., Glover G., Reiss A.L. Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nature Communications. 2018. 9 (1). https://doi.org/10.1038/s41467-018-03664-4
- Santoro A., Battiston F., Lucas M., Petri G., Amico E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat Commun. 2024. 15: 10244. https://doi.org/10.1038/s41467-024-54472-y
- Schmitz T.W., Correia M.M., Ferreira C.S., Prescot A.P., Anderson M.C. Hippocampal GABA enables inhibitory control over unwanted thoughts. Nat Commun. 2017. 8: 1311. https://doi.org/10.1038/s41467-017-00956-z
- Schoffelen J.M., Oostenveld R., Fries P. Neuronal coherence as a mechanism of effective corticospinal interaction. Science. 2005. 308: 111–113. https://doi.org/10.1126/science.1107027
- Schölvinck M.L., Maier A., Ye F.Q., Duyn J.H., Leopold D.A. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. 2010. 107: 10238–10243. https://doi.org/10.1073/pnas.0913110107
- Sechenov I.M. The elements of thought, final version. 1901. In: Sechenov I.M. Selected Works, Amsterdam, E.J. Bonset, 1968.
- Seeley W.W. The salience network: a neural system for perceiving and responding to homeostatic demands. Journal of Neuroscience. 2019. 39 (50): 9878–9882. https://doi.org/10.1523/jneurosci.1138–17.2019
- Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience. 2007. 27 (9): 2349–2356. https://doi.org/10.1523/jneurosci.5587-06.2007
- Seth A.K., Bayne, T. Theories of consciousness. Nat. Rev. Neurosci. 2022. 23: 439–452. https://doi.org/10.1038/s41583-022-00587-4
- Shmuel A., Leopold D.A. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Hum. Brain Mapp. 2008. 29: 751–761. https://doi.org/10.1002/hbm.20580
- Shulman G.L., Fiez J.A., Corbetta M., Buckner R.L., Miezin F.M., Raichle M.E., Petersen S.E. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience. 1997. 9 (5): 648–663. https://doi.org/10.1162/jocn.1997.9.5.648
- Sizemore A.E., Phillips-Cremins J.E., Ghrist R., Bassett D.S. The importance of the whole: Topological data analysis for the network neuroscientist. Network Neuroscience. 2018. 3 (3): 656–673. https://doi.org/10.1162/netn_a_00073
- Slioussar N., Korotkov A., Cherednichenko D., Chernigovskaya T., Kireev M. Exploring the nature of morphological regularity: an fMRI study on Russian. Language Cognition and Neuroscience. 2023. 39 (1): 24–39. https://doi.org/10.1080/23273798.2023.2237138
- Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E. et al. Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences. 2009. 106 (31): 13040–13045. https://doi.org/10.1073/pnas.0905267106
- Smucny J., Lesh T.A., Zarubin V.C., Niendam T.A., Ragland J.D., Tully L.M., Carter C.S. One-Year stability of frontoparietal cognitive control network connectivity in recent onset schizophrenia: A Task-Related 3T FMRI study. Schizophrenia Bulletin. 2019. 46 (5): 1249–1258. https://doi.org/10.1093/schbul/sbz122
- Sporns O., Tononi G., Kötter R. The Human Connectome: A Structural Description of the Human Brain. PLOS Computational Biology. 2005. 1: e42. https://doi.org/10.1371/journal.pcbi.0010042
- Stephan K.E., Friston K.J. Analyzing effective connectivity with functional magnetic resonance imaging. WIREs Cognitive Science. 2010. 1 (3): 446–459. https://doi.org/10.1002/wcs.58
- Vinck M., Uran C., Spyropoulos G., Onorato I., Broggini A.C., Schneider M., Canales-Johnson A. Principles of large-scale neural interactions. Neuron. 2023. 111: 987–1002. https://doi.org/10.1016/j.neuron.2023.03.015
- Vygotsky L. Thought and language. Boston MA: The MIT Press, 1970. 168 p.
- Wang H., Fan L., Song M., Liu B., Wu D., Jiang R. et al. Functional connectivity predicts individual development of inhibitory control during adolescence. Cereb. Cortex. 2021. 31: 2686–2700. https://doi.org/10.1093/cercor/bhaa383
- Weiss Р. Ergebnisse der Biologie. Berlin: Verlag von Julius Springer, 1928. 582 p.
- Wen Z., Seo J., Pace-Schott E.F., Milad M.R. Abnormal dynamic functional connectivity during fear extinction learning in PTSD and anxiety disorders. Molecular Psychiatry. 2022. 27 (4): 2216–2224. https://doi.org/10.1038/s41380-022-01462-5
- Wilson H.R., Cowan J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. 1972. 12: 1–24. https://doi.org/10.1016/s0006-3495(72)86068-5
- Yang H., Di X., Gong Q., Sweeney J., Biswal B. Investigating inhibition deficit in schizophrenia using task-modulated brain networks. Brain Structure and Function. 2020. 225 (5): 1601–1613. https://doi.org/10.1007/s00429-020-02078-7
- Yu R., Han B., Wu X., Wei G., Zhang J., Ding M., Wen X. Dual-functional network regulation underlies the central executive system in working memory. Neuroscience. 2023. 524: 158–180. https://doi.org/10.1016/j.neuroscience.2023.05.025
- Yu Y., Herman P., Rothman D.L., Agarwal D., Hyder F. Evaluating the gray and white matter energy budgets of human brain function. J. Cereb. Blood Flow Metab. 2018. 38: 1339–1353. https://doi.org/10.1177/0271678x17708691
- Zhang J., Kucyi A., Raya J., Nielsen A.N., Nomi J.S., Damoiseaux J.S. et al. What have we really learned from functional connectivity in clinical populations? NeuroImage. 2021. 242: 118466. https://doi.org/10.1016/j.neuroimage.2021.118466
- Zhao W., Makowski C., Hagler D.J., Garavan H.P., Thompson W.K., Greene D.J. et al. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. NeuroImage. 2023. 270: 119946. https://doi.org/10.1016/j.neuroimage.2023.119946
- Zheltyakova M., Korotkov A., Masharipov R., Myznikov A., Didur M., Cherednichenko D., et al. Social interaction with an anonymous opponent requires increased involvement of the theory of mind neural system: an FMRI study. Frontiers in Behavioral Neuroscience. 2022. 16. https://doi.org/10.3389/fnbeh.2022.807599
Arquivos suplementares
