Mechanisms of cognitive aging: norm and pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cognitive aging is a multifactorial process that manifests itself in the deterioration of attention, memory, learning ability, decreased speed of information processing and decision-making, language capabilities, and impairment of executive functions. The mechanisms underlying these processes are not fully understood. The literature contains data on age-related changes in the structure, metabolism and activity of the brain, the occurrence of inflammatory processes and oxidative stress, as well as the influence of genetic and environmental factors. Although considerable evidence has been found of natural changes in the aging brain, they are not clearly integrated. At the same time, understanding the mechanisms of these processes will allow developing strategies for the prevention and treatment of cognitive impairment in old age to achieve a full quality of life at any stage. In neurophysiology, a distinction is made between “healthy aging” with minor changes in the cognitive function, and “pathological aging”, aggravated by the development of neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), characterized by a sharp decline in mental abilities, up to dementia. Changes in the brain of patients with AD and PD differ from those observed during normal aging. However, the mechanisms by which aging increases the risk of developing AD and PD remain unclear. To slow down/prevent the processes of cognitive decline, it is important to understand what compensatory mechanisms of the brain (cognitive reserve) exist that increase resistance to cognitive aging. This review briefly describes the main neural and network changes observed in healthy older people and leading to certain difficulties in memorization, problem solving and decision making. The main focus is on the consideration of the putative causes of cognitive aging. Part of the review concerns the contribution of aging mechanisms to the development of neurodegenerative diseases such as AD and PD. Data on the existing cognitive reserve and ways to maintain it are also provided.

About the authors

V. F. Kitchigina

Institute of Theoretical and Experimental Biophysics RAS

Author for correspondence.
Email: vkitchigina@gmail.com
Pushchino, Moscow Region, Russia

References

  1. Брагин А.Г., Виноградова О.С. Явление хронической потенциации в кортикальном афферентном входе пирамид поля СА3 гиппокампа. Физиологические механизмы памяти. Пущино-на-Оке: Изд-во НЦБИ Пущино. 1973. С. 8–24.
  2. Бурняшева А.О., Стефанова Н.А., Колосова Н.Г., Телегина Д.В. Изменения в системе глутамат/ГАМК в гиппокампе крыс с возрастом и при развитии признаков болезни Альцгеймера. Биохимия 2023. 88 (12): 2358–2374.
  3. Кащенко С.А., Еранова А.А., Чугуй Е.В. Глимфатическая дисфункция и нарушения сна: косвенное влияние на болезнь Альцгеймера. Журн. неврол. психиатр. 2024. 124 (4): 7–12.
  4. Кичигина В.Ф. Эндогенная каннабиноидная система мозга как мишень для воздействий при нейродегенеративных заболеваниях. Журн. высш. нервн. деят. 2016. 66 (4): 387–413.
  5. Кичигина В.Ф., Попова И.Ю., Шубина Л.В. О механизмах патогенеза болезни Альцгеймера: Особая роль передне-базального мозга. Журн. высш. нервн. деят. 2024. 74 (5): 538–564.
  6. Новиков Н.И., Бражник Е.С., Кичигина В.Ф. Патологические корреляты когнитивных нарушений при болезни Паркинсона: От молекул до нейронных сетей. Биохимия, 2023. 88 (11): 1–19.
  7. Семенов Д.Г., Беляков А.В. BDNF и старческое угнетение когнитивных функций Журн. высш. нервн. деят., 2021. 71 (4): 453–467.
  8. Широлапов И.В., Захаров А.В., Смирнова Д.А., Лямин А.В., Гайдук А.Ю. Значение глимфатического пути во взаимосвязи цикла сон-бодрствование и нейродегенеративных заболеваний. Журн. неврол. психиатр. 2023. 123 (10): 42–47.
  9. Aarsland D., Andersen K., Larse J.P., Lolk A., Nielse H., Kragh-Sorensen P. Risk of dementia in Parkinson’s disease: A community-based, prospective study. Neurology 2001. 56: 730–736.
  10. Abdel Rassoul R., Alves S., Pantesco V., De Vos J., Michel B., Perret M., Mestre-Francés N., Verdier J.M., Devau G. Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer’s disease-like pathology. PLoS One 2010. 5 (9): e12770.
  11. Aimone J.B., Wiles J., Gage F.H. Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci. 2006. 9: 723–727.
  12. Alexander G.E., Ryan L., Bowers D., Foster T.C., Bizon J.L., Geldmacher D.S., Glisky E.L. Characterizing cognitive aging in humans with links to animal models. Front. Aging Neurosci. 2012. 4: 21.
  13. Ali A.B., Islam A., Constanti A. The fate of interneurons, GABAA receptor sub-types and perineuronal nets in Alzheimer’s disease. Brain Pathol. 2023. 33 (1): e13129.
  14. Allen R.J., Atkinson A.L., Nicholls L.A.B. Strategic prioritisation enhances young and older adults’ visual feature binding in working memory. Q. J. Exp. Psychol. (Hove). 2021. 74 (2): 363–376.
  15. Amunts, K., Mohlberg, H., Bludau, S., Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 2020. 369: 988–992.
  16. An Y., Varma V.R., Varma S., Casanova R., Dammer E., Pletnikova O. et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 2018. 14: 318–329.
  17. Anderson T.J. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can. J. Cardiol. 2006. 22: 72B–80B.
  18. Anderton B. Ageing of the brain. Mech. Ageing Dev. 2002. 123: 811–817.
  19. Angenstein N. Asymmetries and hemispheric interaction in the auditory system of elderly people. Front. Neuroimaging 2024, 2: 1320989.
  20. Angenstein N., Brechmann A. Left auditory cortex is involved in pairwise comparisons of the direction of frequency modulated tones. Front. Neurosci. 7: 115.
  21. Araujo J.A., Studzinski C.M., Milgram N.W. Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005. 29: 411–422.
  22. Antoine M.W., Langberg T., Schnepel P., Feldman D.E. Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. Neuron 2019. 101: 648–661.e4.
  23. Apple D. M., Solano-Fonseca R., Kokovay E. Neurogenesis in the aging brain. Biochem. Pharmacol. 2017. 141: 77–85.
  24. Appleton J.P., Scutt P., Sprigg N., Bath P.M. Hypercholesterolaemia and vascular dementia. Clin. Sci. (Lond.) 2017. 131: 1561–1578.
  25. Aron L., Zullo J., Yankner B.A. The adaptive aging brain. Curr. Opin. Neurobiol. 2022. 72: 91–100.
  26. Ayodele T., Rogaeva E., Kurup J.T., Beecham G., Reitz C. Early-Onset Alzheimer’s Disease: What Is Missing in Research? Curr. Neurol. Neurosci. Rep. 2021. 21 (2): 4.
  27. Aymerich M.S, Aso E., Abellanas M.A, Tolon R.M, Ramos J.A, Ferrer I., et al. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem Pharmacol. 2018. 157: 67–84.
  28. Bak L.K., Schousboe A., Waagepetersen H.S. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 2006. 98: 641–653.
  29. Bakhtiari A., Petersen J., Urdanibia-Centelles O., Ghazi M.M., Fagerlund B., Mortensen E.L. et al. Power and distribution of evoked gamma oscillations in brain aging and cognitive performance. Geroscience. 2023. 45 (3): 1523–1538.
  30. Bala K., Porel P., Aran K.R. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl.) 2024. 241 (10): 1939–1954.
  31. Baltes P.B., Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging 1997. 12: 12–21.
  32. Banich M.T. The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn. 1998. 36: 128–157.
  33. Banuelos C., Wołoszynowska-Fraser M.U. GABAergic networks in the prefrontal cortex and working memory. J. Neurosci. 2017. 37: 3989–3991.
  34. Barnes C.A., Treves A., Rao G., Shen J. Electrophysiological markers of cognitive aging: region specificity and computational consequences. Semin. Neurosci. 1994. 6: 359 –367.
  35. Barnes C. Long-term potentiation and the ageing. Philos. Trans. Royal Soc. Lond. B Biol. Sci. 2003. 358: 765–772.
  36. Barnes C.A., Rao G., Houston F.P. тенциация LTP induction threshold change in old rats at the perforant path-granule cell synapse. Neurobiol. Aging. 2000a. 21: 613–620.
  37. Barnes C.A., Rao G., Orr G. Age-related decrease in the Schaffer collateral-evoked EPSP in awake, freely behaving rats. Neural Plast. 2000b. 7: 167–178.
  38. Barulli D., Stern Y. Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends Cogn. Science 2013. 17 (10): 502–509.
  39. Bayat M., Kohlmeier K.A., Haghani M., Haghighi A.B., Khalili A., Bayat G. et al. Co-treatment of vitamin D supplementation with enriched environment improves synaptic plasticity and spatial learning and memory in aged rats. Psychopharmacology (Berl). 2021. 238 (8): 2297–2312.
  40. Beardmore R., Hou R., Darekar A., Holmes C., Boche D. The Locus Coeruleus in Aging and Alzheimer’s Disease: A Postmortem and Brain Imaging Review. Journal of Alzheimer’s Disease: JAD. 2021. 83: 5–22.
  41. Beker N., Ganz A., Hulsman M., Klausch T., Schmand B.A., Scheltens P. et al. Association of cognitive function trajectories in centenarians with postmortemneuropathology, physical health, and other risk factors for cognitive decline. JAMA Network Open 2021. 4 (1): e2031654–e2031654.
  42. Bellelli F., Angioni D., Arosio B., Vellas B., De Souto Barreto P. Hallmarks of aging and Alzheimer’s Disease pathogenesis: Paving the route for new therapeutic targets. Ageing Res. Rev. 2025. 106: 102699.
  43. Benfenati F. Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed. 2007. 78: 58–66.
  44. Benito C., Nunez E., Tolon R.M., Carrier E.J., Rabano A., Hillard C.J., Romero J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 2003. 23: 11136–11141.
  45. Berlingeri M., Danelli L., Bottini G., Sberna M., Paulesu E. Reassessing the HAROLD model: is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp. Brain Res. 2013. 224: 393–410.
  46. Bezprozvanny I., Mattson M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 2008. 31: 454–463.
  47. Blinkouskaya Y., Weickenmeier J. Brain Shape Changes Associated with Cerebral Atrophy in Healthy Aging and Alzheimer’s Disease. Front. Mech. Eng. 2021. 7: 7056530.
  48. Bliss T.V. Gardner-Medwin A.R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973. 232: 357–374.
  49. Bloss E.B., Puri R., Yuk F., Punsoni M., Hara Y., Janssen W.G. et al. Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses. Neurobiol Aging 2013. 34 (1): 200–210.
  50. Bose A., Beal M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016. 139 (Suppl 1): 216–231.
  51. Bock O., Haeger M., Voelcker-Rehage C. Structure of executive functions in young and in older persons. PLOS ONE 2019. 14 (5): e0216149.
  52. Boric K., Munoz P., Gallagher M., Kirkwood A. Potential adaptive function for altered long-term potentiation mechanisms in aging hippocampus. J. Neurosci. 2008. 28: 8034–8039.
  53. Boutet I., Taler V., Collin C.A. On the particular vulnerability of face recognition to aging: A review of three hypotheses. Front. Psychol. 2015. 6: 1139.
  54. Braver T.S., West R.L. Working memory, executive control, and aging. In F.I.M. Craik & T.A. Salthouse (Eds.), The handbook of aging and cognition. 2008. Psychology Press. 3rd ed. P. 311–372.
  55. Brechmann A., Angenstein N. The impact of task difficulty on the lateralization of processing in the human auditory cortex. Hum. Brain Mapp. 2019. 40: 5341–5353.
  56. Brechmann A., Gaschler-Markefski B., Sohr M., Yoneda K., Kaulisch T., Scheich H. Working memory specific activity in auditory cortex: potential correlates of sequential processing and maintenance. Cereb. Cortex 2007. 17: 2544–2552.
  57. Brown L.A., Niven E.H., Logie R H., Rhodes S., Allen R.J. Visual feature binding in younger and older adults: Encoding and suffix interference effects. Memory 2017. 25 (2): 261–275.
  58. Bruel-Jungerman E., Davis S., Laroche S. Brain plasticity mechanisms and memory: a party of four. Neuroscientist 2007. 13 (5): 492–505.
  59. Brundin P., Melki R. Prying into the prion hypothesis for Parkinson’s disease. J. Neurosci. 2017. 37: 9808–9818.
  60. Buchanan R.W., Vladar K., Barta P.E., Pearlson G.D. Structural evaluation of the prefrontal cortex in schizophrenia. Am. J. Psychiatry 1998. 155 (8): 1049–1055.
  61. Buhusi M., Etheredg C., Granholm A.C., Buhusi C.V. Increased hippocampal proBDNF contributes to memory impairments in aged mice. Front. Aging Neurosci. 20179: 284.
  62. Burianova J., Ouda L., Profant O., Syka J. Age-related changes in GAD levels in the central auditory system of the rat. Exp. Gerontol. 2009. 44: 161–169.
  63. Burke S.N., Barnes C.A. Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 2006. 7: 30–40.
  64. Burke S.N., Barnes C.A. Senescent synapses and hippocampal circuit dynamics. Trends Neurosci. 2010. 33: 153–61.
  65. Burkewitz K., Zhang Y., Mair W.B. AMPK at the nexus of energetics and aging. Cell Metab. 2014. 20: 10–25. https:// doi.org/10.1016/j.cmet.2014.03.002
  66. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Aging. 2002. 17: 85–100. https:// doi.org/10.1037/0882-7974.17.1.85
  67. Camandola S., Mattson M.P. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease. Biochim. Biophys. Acta 2011. 1813: 965–973.
  68. Camandola S., Mattson M.P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017. 36: 1474–1492.
  69. Campbell V.A., Gowran A. Alzheimer’s disease; taking the edge off with cannabinoids? Br J Pharmacol. 2007. 152 (5): 655–662. https:// doi.org/10.1038/sj.bjp.0707446. Epub 2007 Sep 10.
  70. Castonguay D., Dufort-Gervais J., Ménard C., Chatterjee M., Quirion R., Bontempi B. et al. The tyrosine phosphatase STEP is involved in age-related memory decline. Curr. Biol. 2018. 28 (7): 1079–1089.
  71. Ceravolo R., Borghetti D., Kiferle L., Tognoni,G., Giorgetti A., Neglia D. et al. CSF phosphorylated TAU protein levels correlate with cerebral glucose metabolism assessed with PET in Alzheimer’s disease. Brain Res. Bull. 2008. 76: 80–84.
  72. Chang H.C., Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 2014. 25: 138–145. https:// doi.org/10.1016/j.tem.2013.12.001
  73. Chaudhuri K.R., Healy D.G., Schapira A.H.V. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006. 5: 235–245.
  74. Chen X., Liang Y., Deng Y., Li J., Chen S., Wang C., Luo P. Age-associated reduction of asymmetry in human central auditory function: a 1H-magnetic resonance spectroscopy study. Neural. Plast. 2013. 2013: 735290.
  75. Chow H.M., Herrup K. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 2015. 16: 672–684.
  76. Chupin M., Gérardin E., Cuingnet R., Boutet C., Lemieux L., Lehéricy S. et al. Alzheimer’s Disease Neuroimaging Initiative 2009. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus. 2009. 19 (6): 579–587.
  77. Coleman C, Martin I.J. Unraveling Parkinson’s Disease Neurodegeneration: Does Aging Hold the Clues? Parkinsons Dis. 2022. 12 (8): 2321–2338.
  78. Colgin L.L. Oscillations and hippocampal-prefrontal synchrony. Curr. Opin. Neurobiol. 2011. 21: 467–474.
  79. Colgin L.L. Theta-γ coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 2015. 31: 45–50.
  80. Colgin L.L., Denninger T., Fyhn M., Hafting T., Bonnevie T., Jensen O. et al. Frequency of γ oscillations routes flow of information in the hippocampus. Nature 2009. 462: 353–357.
  81. Colgin L.L., Moser E.I. Gamma oscillations in the hippocampus. Physiology 2010. 25: 319–329.
  82. Cox M.F., Hascup E.R., Bartke, A., Hascup K.N. Friend or foe? Defining the role of glutamate in aging and Alzheimer’s disease. Front. Aging 2022. 3: 929474.
  83. Cutler R.G., Kelly J., Storie K., Pedersen W.A., Tammara A., Hatanpaa K. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. U S A. 2004. 101: 2070–2075.
  84. Cummings J.L. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol. Aging 2000. 21 (6): 845–861.
  85. Cuypers K., Maes C., Swinnen S.P. Aging and gaba. Aging (albany ny). 2018. 10 (6): 1186–1187.
  86. Davidson R.J., Hugdahl K., editors. Brain asymmetry. Cambridge, MA: MIT Press; 1995.
  87. Del Popolo Cristaldi F.,·Saccani M.S., Contemori G., Livoti V., Bonato M. The Impact of Auditory Distraction on Visual Memory Encoding in Middle-aged and Older Adults: A High-density EEG Study. J. Cogn. Neuroscie. 2025. 23: 1–30.
  88. Deng L., Davis S.W., Monge Z.A., Wing E.A., Geib B.R., Raghunandan A., Cabeza R. Age-related dedifferentiation and hyperdifferentiation of perceptual and mnemonic representations. Neurobiol. Aging 2021. 106: 55–67.
  89. Denis I., Potier B., Vancassel S., Heberden C., Lavialle M. Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res. Rev. 2013. 12: 579–594.
  90. Dennis N.A., Hayes S.M., Prince S.E., Madden D.J., Huettel S.A., Cabeza R. Effects of aging on the neural correlates of successful item and source memory encoding. J. Experim. Psychol.: Learning, Memory, and Cognition. 2008. 34: 791–808.
  91. Dias J.W., Mcclaskey C.M., Eckert M.A., Jensen J.H., Harris K.C. Intra- and interhemispheric white matter tract associations with auditory spatial processing: distinct normative and aging effects. Neuroimage 2020. 215: 116792.
  92. Dickstein D.L., Weaver C.M., Luebke J.I., Hof P.R. Dendritic spine changes associated with normal aging. Neuroscience 2013. 251: 21–32.
  93. Disterhoft J.F., Moyer J.R.Jr., Thompson LT. The calcium rationale in aging and Alzheimer’s disease. Evidence from an animal model of normal aging. Ann. NY Acad. Sci. 1994. 747: 382–406.
  94. Dobri S.G.J., Ross B. Total GABA level in human auditory cortex is associated with speech-in-noise understanding in older age. Neuroimage 2021. 225: 117474.
  95. Dobri S., Chen J.J., Ross B. Insights from auditory cortex for GABA+ magnetic resonance spectroscopy studies of aging. Eur. J. Neurosci. 2022. 56: 4425–4444.
  96. Dolcos F., Rice H.J., Cabeza R. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002. 26: 819–825.
  97. Dong Y., Brewer G.J. Global metabolic shifts in age and Alzheimer’s disease mouse brains pivot at NAD+/NADH redox sites. J. Alzheimers Dis. 2019. 71: 119–140.
  98. Driver J.A., Logroscino G., Gaziano J.M., Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009. 72: 432–438.
  99. Dudek S.M., Bear M.F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 1993. 13: 2910–2918.
  100. DuBoff B., Feany M., Gőtz J. Why size matters – balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci. 2013. 36: 325–335.
  101. Dumitriu D., Hao J., Hara Y., Kaufman J., Janssen W.G., Lou W. et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J. Neurosci. 2010. 30: 7507–7515.
  102. Eddins A.C., Ozmeral E.J., Eddins D.A. Aging alters across hemisphere cortical dynamics during binaural temporal processing. Front. Neurosci. 2022. 16: 1060172.
  103. Eriksson P.S., Perfilieva E., Bjork-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H. Neurogenesis in the adult human hippocampus. Nature Medicine 1998. 4: 1313–1317.
  104. Ethiraj J., Palpagama T.H., Turner C., van der Werf B., Waldvogel H.J., Faull R.LM., Kwakowsky A. The effect of age and sex on the expression of GABA signaling components in the human hippocampus and entorhinal cortex. Sci Rep. 2021. 11 (1): 21470.
  105. Garg N., Choudhry M.S., Bodade R.M. A review on alzheimer’s disease classification from normal controls and mild cognitive impairment using structural mr images. J. Neurosci. Methods. 2023. 384: 109745.
  106. Geddes J.W., Tekirian T.L., Soultanian N.S., Ashford J.W., Davis D.G., Markesbery W.R. Comparison of neuropathologic criteria for the diagnosis of Alzheimer’s disease. Neurobiol. Aging 1997. 18 (Suppl): S99–S105.
  107. Geschwind D.H., Miller B.L. Molecular approaches to cerebral laterality: development and neurodegeneration. Am. J. Med. Genet. 2001. 101: 370–381.
  108. Geshwind D.H., Iacobini M. Structural and functional asymmetries of the frontal lobes. In: Miller B., Cummings J., editors. The frontal lobes. New York: Guilford Publications; 1999. P. 45–70.
  109. Giaquinto F. The indirect effect of cognitive reserve on the relationship between age and cognition in pathological ageing: A cross-sectional retrospective study in an unselected and consecutively enrolled sample. J. Neuropsychol. 2023. 17: 477–490.
  110. Giroud N., Hirsiger S., Muri R., Kegel A., Dillier N., Meyer M. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults. Brain. Struct. Funct. 2018. 223: 145–163.
  111. Giroud N., Keller M., Hirsiger S., Dellwo V., Meyer M. Bridging the brain structure-brain function gap in prosodic speech processing in older adults. Neurobiol. Aging 2019. 80: 116–126.
  112. Goh J.O., Suzuki A., Park D.C. Reduced neural selectivity increases fMRI adaptation with age during face discrimination. Neuroimage, 2010. 51: 336–344. https://doi.org/10.1016/j.neuroimage.2010.01.107
  113. Goldstein D.R. Aging, imbalanced inflammation and viral infection. Virulence 2010. 1 (4): 295–298.
  114. Goyal M.S., Vlassenko A.G., Blazey T.M., Su Y., Couture L.E., Durbin T.J. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 2017. 26: 353–360.e3.
  115. Goodman M.S., Kumar S., Zomorrodi R., Ghazala Z., Cheam A.S.M., Barr M.S. et al. Theta-γ coupling and working memory in Alzheimer’s dementia and mild cognitive impairment. Front. Aging Neurosci. 2018. 10: 101.
  116. Goossens T., Vercammen C., Wouters J., van Wieringen A. Aging affects neural synchronization to speech-related acoustic modulations. Front. Aging Neurosci. 2016. 8: 133.
  117. Gómez-Ruiz M., Hernández M., de Miguel R., Ramos J.A. An overview on the biochemistry of the cannabinoid system. Mol Neurobiol. 2007. 36 (1): 3–14.
  118. Greene N.R., Naveh-Benjamin M. A specificity principle of memory: Evidence from aging and associative memory. Psychol. Science 2020. 31: 316–331.
  119. Greenwald R.R., Jerger J. Aging affects hemispheric asymmetry on a competing speech task. J. Am. Acad. Audiol. 2001. 12 (4): 167–173.
  120. Greenwood P.M. Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology 2007. 21 (6): 657–673.
  121. Griffiths B.J., Martín-Buro M.C., Staresina B.P., Hanslmayr S. Disentangling neocortical alpha/beta and hippocampal theta/gamma oscillations in human episodic memory formation, Neuroimage 2021. 242: 118454.
  122. Grimaldi D., Papalambros N.A., Zee P.C., Malkani R.G. Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol Dis. 2020. 141: 104865.
  123. Grüunewald A., Rygiel K.A., Hepplewhite P.D., Morris C.M., Picard M., Turnbull D.M. Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Ann. Neurol. 2016. 79: 366–378.
  124. Guazzo F., Allen R., Baddeley A., Della Sala S. Unimodal and Crossmodal working memory binding is not differentially affected by age or Alzheimer’s disease. Neuropsychology 2020. 3 (4): 420–436.
  125. Guidi M., Rani A., Karic S., Severance B., Kumar A., Foster T.C. Contribution of N-methyl-D-aspartate receptors to attention and episodic spatial memory during senescence. Neurobiol. Learn. Mem. 2015. 125: 36–46.
  126. Guillozet A.L., Weintraub S., Mash D.C., Mesulam M.M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol. 2003. 60: 729–736.
  127. Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001. 18: 685–716.
  128. Hamilton C.J., Brown L.A., Rossi-Arnaud C. Older adults benefit from symmetry, but not semantic availability, in visual working memory. Front. Psychol. 2018. 8: e2373.
  129. Hara Y., Punsoni M., Yuk F. Park C.S., Janssen W.G.M., Rapp P.R., Morrison J.H. Synaptic distributions of GluA2 and PKMζ in the monkey dentate gyrus and their relationships with aging and memory. J. Neurosci. 2012. 32: 7336–7344.
  130. Hasselmo M.E., Bodelon C., Wyble B.P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002. 14: 793–817.
  131. Hausmann M., Corballis M.C., Fabri M., Paggi A., Lewald J. Sound lateralization in subjects with callosotomy, callosal agenesis, or hemispherectomy. Cognit. Brain Res. 2005. 25 (2): 537–546.
  132. Heise K.F., Zimerman M., Hoppe J., Gerloff C., Wegscheider K., Hummel F.C. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance. J. Neurosci. 2013. 33: 9039–9049.
  133. Hellige J.B. Hemispheric asymmetry: what’s right and what’s left. Cambridge, MA: Harvard University Press; 1993.
  134. Hermush V., Ore L., Stern N., Mizrahi N., Fried M., Krivoshey M. et al. Effects of rich cannabidiol oil on behavioral disturbances in patients with dementia: A placebo controlled randomized clinical trial. Front. Med. (Lausanne). 2022. 9: 951889.
  135. Heppner F.L., Ransohoff R.M., Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015. 16: 358–372.
  136. Hill P.F., King D.R., Rugg M.D. Age differences in retrieval-related reinstatement reflect age-related dedifferentiation at encoding. Cerebral Cortex 2021. 31: 106–122.
  137. Hof P.R., Glannakopoulos P., Bouras C. The neuropathological changes associated with normal brain aging. Histol. Histopathol. 1996. 11: 1075–1088.
  138. Holz E.M., Glennon M., Prendergast K., Sauseng P. Theta-γ phase synchronization during memory matching in visual working memory. Neuroimage 2010. 52: 326–335.
  139. Horwitz A., Dyhr Thomsen M., Wiegand I., Horwitz H., Klemp M., Nikolic M. et al. Visual steady state in relation to age and cognitive function. PLoS One 2017. 12 (2): e0171859.
  140. Horwitz A., Klemp M., Horwitz H., Thomsen M.D., Rostrup E., Mortensen E.L. et al. Brain responses to passive sensory stimulation correlate with intelligence. Front. Aging Neurosci. 2019. 10: 1–17.
  141. Horwitz A., Thomsen M.D., Wiegand I., Horwitz H., Klemp M., Rask L. et al. Visual steady state in relation to age and cognitive function. PLoS One. 2017. 12 (2): 1–23.
  142. Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013. 37 (9 Pt B): 2243–2257.
  143. Huang Y.-Y., Kandel E.R. Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn. Mem. 2006. 13: 298–306.
  144. Huang D., Liu D., Yin J., Qian T., Shrestha S., Ni H. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur. Radiol. 2017. 27: 2698–2705.
  145. Ishii R., Canuet L., Aoki Y., Hata M., Iwase M., Ikeda S., Nishida K., Ikeda M. Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 2018. 75 (4): 151–161.
  146. Isler B., Giroud N., Hirsiger S., Kleinjung T., Meyer M. Bilateral age-related atrophy in the planum temporale is associated with vowel discrimination difficulty in healthy older adults. Hear. Res. 2021. 406: 108252.
  147. Jack C.R.Jr., Petersen R.C., Xu Y.C., Waring S.C., O’Brien P.C., Tangalos E.G. et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997. 49: 786–794.
  148. Jahanshahi M., Rothwell J.C. Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017. 372: 1–10.
  149. Jensen O., Tesche C. Frontal theta activity in human’s increases with memory load in a working memory task. Eur. J. Neurosci. 2002. 15: 1395–1399.
  150. Jerger J., Moncrieff D., Greenwald R., Wambacq I., Seipel A. Effect of age on interaural asymmetry of event-related potentials in a dichotic listening task. J. Am. Acad. Audiol. 2000. 11 (7): 383–389.
  151. Jeppesen D.K., Bohr V.A., Stevnsner T. DNA repair deficiency in neurodegeneration. Prog. Neurobiol. 2011. 94: 166–200.
  152. Jin Y. Synaptogenesis. WormBook. 2005. 16: 1–11.
  153. Jin M., Cai S.Q. Mechanisms Underlying Brain Aging Under Normal and Pathological Conditions. Neurosci Bull. 2023. 39 (2): 303–314.
  154. Jung K.M., Astarita G., Yasar S., Vasilevko V., Cribbs D.H., Head E. et al. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol. Aging. 2012. 33: 1522–1532.
  155. Jurado S. AMPA receptor trafficking in natural and pathological aging. Front. Mol. Neurosci. 2018. 10: 446.
  156. Farahani E.D., Wouters J., Van Wieringen A. Neural generators underlying temporal envelope processing show altered responses and hemispheric asymmetry across age. Front. Aging Neurosci. 2020. 12: 596551.
  157. Ferrer I. Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J. Bioenerg. Biomembr. 2009. 41: 425–431.
  158. Ferreira S.T., Klein W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem. 2011. 96 (4): 529–543.
  159. Fjell A.M., McEvoy L., Holland D., Dale A.M., Walhovd K.B. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progr. Neurobiol. 2014. 117: 20–40.
  160. Foster T.C. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog. Neurobiol. 2012. 96: 283–303.
  161. Foster T.C., Kyritsopoulos C., Kumar A. Central role for NMDA receptors in redox mediated impairment of synaptic function during aging and Alzheimer’s disease. Behav. Brain Res. 2017. 322 (Pt B): 223–232.
  162. Franklin R.G.Jr., Zebrowitz L.A. Age differences in emotion recognition: Task demands or perceptual dedifferentiation? Exper. Aging Research 2017. 43: 453–466.
  163. Freigang C., Richter N., Rübsamen R., Ludwig A.A. Age-related changes in sound localisation ability. Cell Tissue Res. 2015. 361 (1): 371–386.
  164. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 2005. 9: 474–480.
  165. Freitas H.R., Ferreira G.D.C., Trevenzoli I.H., Oliveira K.J., de Melo Reis R.A. Fatty Acids, Antioxidants and Physical Activity in Brain Aging. Nutrients. 2017. 9 (11): 1263.
  166. Kamathe R.S., Joshi K.R. A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and GM for atrophy detection in Alzheimer’s disease. Biomed. Signal Process Control 2018. 40: 41–48.
  167. Keller M., Neuschwander P., Meyer M. When right becomes less right: neural dedifferentiation during suprasegmental speech processing in the aging brain. Neuroimage 2019. 189: 886–895.
  168. Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017. 40: 151–166.
  169. Kitchigina V.F. Alterations of coherent theta and gamma network oscillations as an early biomarker of temporal lobe epilepsy and alzheimer’s disease. Front integr neurosci. 2018. 27 (12): 36.
  170. Klaips C.L., Jayaraj G.G., Hartl, F.U. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 2018. 217: 51–63.
  171. Ko P.C., Duda B., Hussey E., Mason E., Molitor R.J., Woodman G.F., Ally B.A. Understanding age-related reductions in visual working memory capacity: Examining the stages of change detection. Attention, Perception, & Psychophysics 2014. 76: 2015–2030.
  172. Koen J.D., Rugg M.D. Neural dedifferentiation in the aging brain. Trends in Cogn. Sci. 2019. 23: 547–559.
  173. Kollen M., Stephan A., Faivre-Bauman A., Loudes C., Sinet P.M., Alliot J. et al. Preserved memory capacities in aged Lou/C/Jall rats. Neurobiol Aging. 2010. 31: 129–142.
  174. Kovacs G.G., Adle-Biassette H., Milenkovic I., Cipriani S., van Scheppingen J., Aronica E. Linking pathways in the developing and aging brain with neurodegeneration, Neuroscience 2014. 269: 152–172.
  175. Kowalska M., Disterhoft J.F. Relation of nimodipine dose and serum concentration to learning enhancement in aging rabbits. Exp. Neurol. 1994. 127: 159–166.
  176. Kumar A. Long-term potentiation at CA3-CA1 hippocampal synapses with special emphasis on aging, disease, and stress, Front. Aging Neurosci. 2011. 3: 7.
  177. Kumar J.S., Mann J.J. PET tracers for serotonin receptors and their applications. Cent. Nerv. Syst. Agents Med. Chem. 2014. 14: 96–112.
  178. Kumar A., Vikas P., Faiq A.M., Ghosh S.K., Kumari C. Adult neurogenesis in humans: A review of Basic concepts, History, Current Research and Clinical implications. Innovations in Clinical Neuroscience 2019. 16 (5): 30–37.
  179. Kuo F., Massoud T.F. .Structural asymmetries in normal brain anatomy: A brief overview. Ann Anat. 2022. 241: 151894.
  180. Lalla A., Tarder-Stoll H., Hasher L, Duncan K. Aging shifts the relative contributions of episodic and semantic memory to decision-making. Psychol. Aging 2022. 37 (6): 667–680.
  181. Lane-Donovan C., Philips G.T., Herz J. More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron. 2014. 83: 771–787.
  182. Landfield P.W. Pitler T.A. Prolonged Ca2/-dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 1984. 226: 1089–1092.
  183. Leandro G.S., Sykora P., Bohr V.A. The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutat. Res. 2015. 776: 31–39.
  184. Lebel C., Caverhill-Godkewitsch S., Beaulieu C. Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 2010. 52: 20–31.
  185. Landfield P.W., Pitler T.A. Prolonged Ca2/-dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 1984. 226: 1089–1092.
  186. Lazarov O., Mattson M.P., Peterson D.A., Pimplikar S.W., van Praag, H. When neurogenesis encounters aging and disease. Trends Neurosci. 2010. 33: 569–579.
  187. Levin O., Fujiyama H., Boisgontier M.P., Swinnen S.P., Summers J.J. Aging and motor inhibition: a converging perspective provided by brain stimulation and imaging approaches. Neurosci. Biobehav. Rev. 2014. 43: 100–117.
  188. Leuzy A., Cicognola C., Chiotis K., Saint-Aubert L., Lemoine L., Andreasen N. et al. Longitudinal tau and metabolic PET imaging in relation to novel CSF tau measures in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2019. 46 (5): 1152–1163.
  189. Lewald J., Hanenberg C., Getzmann S. Brain correlates of the orientation of auditory spatial attention onto speaker location in a “cocktail-party” situation. Psychophysiology 2016. 53 (10): 1484–1495.
  190. Li Y., Mao M., Zhu L., Sun Q., Tong J., Zhou Z. IL-17A drives cognitive aging probably via inducing neuroinflammation and theta oscillation disruption in the hippocampus. Int. Immunopharmacol. 2022. 108: 108898.
  191. Liem F., Hurschler M.A., Jancke L., Meyer M. On the planum temporale lateralization in suprasegmental speech perception: evidence from a study investigating behavior, structure, and function. Hum. Brain Mapp. 2014. 35: 1779–1789.
  192. Liepelt-Scarfone I., Ophey A., Kalbe E. Cognition in prodromal Parkinson’ disease, Prog. Brain Res., 2022. 269: 93-111.
  193. Lin X., Parisiadou L., Sgobio C., Liu G., Yu J., Sun L. et al. Conditional expression of Parkinson’s disease-related mutant a-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J. Neurosci. 2012. 32: 9248–9264.
  194. Lindemer E.R., Greve D.N., Fischl B.R., Augustinack J.C., Salat D.H. Regional staging of white matter signal abnormalities in aging and Alzheimer’s disease. NeuroImage: Clinical 2017. 14: 156–165.
  195. Lindenberger U., Baltes P.B. Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging 1994. 9: 339–355.
  196. Lipton S.A., Choi Y.B., Takahashi H., Zhang D., Li W., Godzik A., Bankston L.A. Cysteine regulation of protein function-as exemplified by NMDAreceptor modulation. Trends Neurosci 2002. 25: 474e80.
  197. Liu H., Miyakoshi M., Nakai T., Annabel Chen S.H. Aging patterns of Japanese auditory semantic processing: an fMRI study. Neuropsychol. Dev. Cogn. B. Aging Neuropsychol. Cogn. 2022. 29: 213–236.
  198. Liu P., Smith P.F., Darlington C.L. Glutamate receptor subunits expression in memory-associated brain structures: regional variations and effects of aging. Synapse 2008. 62: 834–841.
  199. Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee, S. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020. 396: 413–446.
  200. López-Otín C., Blasco M., Partridge L., Serrano M., Kroemer G. The Hallmarks of Aging. Cell. 2013. 153: 1194–1217.
  201. Lorenzi M., Pennec X., Frisoni G.B., Ayache N. Alzheimer’s Disease Neuroimaging Initiative. Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images. Neurobiol Aging. 2015. 36 Suppl 1: S42–52.
  202. Lövdén M., Bäckman L., Lindenberger U., Schaefer S., Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 2010. 136 (4): 659–676.
  203. Lu T., Pan Y., Kao S.Y., Li C., Kohane I., Chan J., Yankner B.A. Gene regulation and DNA damage in the ageing human brain. Nature 2004. 429: 883–891.
  204. Madabhushi R., Pan L., Tsai, L.H. DNA damage and its links to neurodegeneration. Neuron 2014. 83: 266–282.
  205. Malenka R C., Bear M.F. LTP and LTD: an embarrassment of riches. Neuron 2004. 44: 5–21.
  206. Malkov A., Popova I., Ivanov A., Jang S-S, Yoon S.Y., Osypov A. et al. Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun. Biol. 2021. 4 (1): 1054.
  207. Mabry T.R., McCarty R., Gold P.E., Foster T.C. Age and stress history effects on spatial performance in a swim task in Fischer-344 rats. Neurobiol. Learn. Memory 1996. 66: 1–10.
  208. Marczynski T.J. GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res. Bull. 1998. 45 (4): 341–379.
  209. Martin J.S., Jerger J.F. Some effects of aging on central auditory processing. J. Rehabil. Res. Dev. 2005. 42: 25–44.
  210. Martin S.J., Grimwood P.D., Morris R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 2000. 23: 649–711.
  211. Martin L.J., Pan Y., Price A.C., Sterling W., Copeland N.G., Jenkins N.A. et al. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 2006. 26: 41–50.
  212. Martin-Moreno A.M., Brera B., Spuch C., Carro E., Garcia-Garcia L., Delgado M. et al. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation. 2012. 9: 8.
  213. Marks D., Heinen N., Bachmann L., Meermeyer S., Werner M., Gallego L. et al. Amyloid precursor protein elevates fusion of promyelocytic leukemia nuclear bodies in human hippocampal areas with high plaque load. Acta Neuropathol Commun. 2021. 9 (1): 66.
  214. Martinowich K. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct. Funct. 2017. 222 (7): 3295–3307.
  215. Mather M., Harley C.W. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain. Trends. Cogn. Sci.2016. 20: 214–226.
  216. Mattson M.P., Arumugam T.V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018. 27: 1176–1199.
  217. Mattson M.P., Cheng B., Culwell A.R., Esch F.S., Lieberburg I., Rydel R.E. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993. 10: 243–254.
  218. Mattson M.P., Duan W., Maswood N. How does the brain control lifespan? Ageing Res. Rev. 2002. 1: 155–165.
  219. Mattson M.P., Gleichmann M., Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008. 60: 748–766.
  220. Maynarda K.R., Hobbsa J.W., Sukumara M., Kardiana A.S., Jimeneza D.V., Schloesserb R.J. et al. Molecular aspects of agerelated cognitive decline: the role of GABA signaling. Trends Mol. Med. 2015. 21: 450–460.
  221. Menzies F.M., Fleming A., Caricasole A., Bento C.F., Andrews S.P., Ashkenazi A. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017. 93: 1015–1034.
  222. Minkova L., Habich A., Peter J., Kaller C.P., Eickhoff S.B., Kloppel S. Gray matter asymmetries in aging and neurodegeneration: a review and meta-analysis. Hum. Brain Mapp. 2017. 38: 5890–5904.
  223. Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain front cell. Neurosci. 2019. 13: 363.
  224. Misrani A., Tabassum S., Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021. 13: 617588.
  225. Massieu L., Tapia R. Glutamate uptake impairment and neuronal damage in young and aged rats in vivo. J Neurochem. 1997. 69 (3): 1151–1160.
  226. Montgomery S.M., Buzsaki G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci .USA 2007. 104: 14495–14500.
  227. Moreno-García A., Kun A., Calero O., Medina M., Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front. Neurosci. 2018. 12: 464.
  228. Morrison J.H., Baxter M.G. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 2012. 13: 240–250.
  229. Muňoz de Leon-Lopez C.A., Carretero-Rey M., Khan Z.U. AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases. Brain Sci. 2021. 11 (3): 405.
  230. Müller-Nedebock A.C., Dekker M.C., Farrer M.J., Hattori N., Lim S.Y., Mellick G.D. et al. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson’s disease. NPJ Parkinsons Dis. 2023. 9: 110.
  231. Mungas D., Fletcher E., Gavett B.E., Widaman K., Zahodne L.B., Hohman T.J. et al. Comparison of education and episodic Implications for measuring cognitive reserve. J. Intern. Neuropsychol. Soc. 2021. 27 (5): 401–411.
  232. Murty D.V., Manikandan K., Kumar W.S., Ramesh R.G., Purokayastha S., Javali M. et al. Gamma oscillations weaken with age in healthy elderly in human EEG. NeuroImage. 2020. 215: 116826.
  233. Murre J.M.N., Janssen S.M.J., Rouw R., Meeter M. The rise and fall of immediate and delayed memory for verbal and visuospatial information from late childhood to late adulthood. Acta Psychologica 2013. 142 (1): 96–107.
  234. Mucke L., Selkoe D.J. Neurotoxicity of amyloid b-protein: synaptic and network dysfunction. Cold Spring Harb. Perspect. Med. 2012. 2: a006338.
  235. Navakkode S., Kennedy B.K. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front. Aging Neurosci. 2024. 16: 1428244.
  236. Naveh-Benjamin M. Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2000. 26: 1170–1187.
  237. Nedergaard M., Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science 2020. 370: 50–56.
  238. Negash S., Wilson R.S., Leurgans S.E., Wolk D.A., Schneider J.A., Buchman A.S. et al. Resilient brain aging: characterization of discordance between Alzheimer’s disease pathology and cognition. Curr. Alzheimer Res. 2013. 10 (8): 844–851.
  239. Ness H.T., Folvik L., Sneve M.H., Vidal-Pineiro D., Raud L., Geier O.M. et al. Reduced hippocampal–striatal interactions during formation of durable episodic memories in aging. Cerebral Cortex 2022. 32: 2358–2372.
  240. Nicholls L.A.B., English B. Multimodal coding and strategic approach in young and older adults’ visual working memory performance. Aging, Neuropsychol., Cognit. 2020. 27 (1): 83–113.
  241. Nigam S.M., Xu S., Kritikou J.S., Marosi K., Brodin L., Mattson M.P. Exercise and BDNF reduce Ab production by enhancing a-secretase processing of APP. J. Neurochem. 2017. 142: 286–296.
  242. Nikhra V. The aging brain: recent research and concepts. Gerontol. Eriatrics Stud. 2017. 1: 1–11.
  243. Nixon R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013. 19: 983–997.
  244. Nguyen L.T., Marini F., Shende S.A., Llano D.A., Mudar R.A. Investigating EEG theta and alpha oscillations as measures of value-directed strategic processing in cognitively normal younger and older adults. Behav. Brain Res. 2020. 391: 12702.
  245. Nikolenko V.N., Borminskaya I.D., Nikitina A.T., Golyshkina M.S., Rizaeva N.A., Oganesyan M.V. Locus Coeruleus-Norepinephrine System: Spheres of Influence and Contribution to the Development of Neurodegenerative Diseases. Front Biosci (Landmark Ed). 2024. 29 (3): 118.
  246. Nixon R.A. The calpains in aging and aging-related diseases. Ageing Res Rev. 2003. 2 (4): 407-418.
  247. Norris C.M., Korol D.L., Foster T.C. Increased susceptibility to induction of long term depression and long-term potentiation reversal during aging. J Neurosci. 1996. 16 (17): 5382-1592.
  248. Ocklenburg S., Güntürkü O. Hemispheric asymmetries over the lifespan. In: The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries. Eds: S. Ocklenburg, O. Güntürkün (Amsterdam: Elsevier Academic Press), 2018. P. 263–288.
  249. Olanow C.W., Bartus R.T., Volpicelli-Daley L.A., Kordower J.H. Trophic factors for Parkinson’s disease: To live or let die. Mov. Disord. 2015. 30: 1715–1724.
  250. Oler J.A., Markus E.J. Age-related deficits in the ability to encode contextual change: a place cell analysis. Hippocampus 2000. 10: 338 –350.
  251. Olgiati P., Politis A.M., Papadimitriou G.N., De Ronchi D., Serretti A. Genetics of late-onset Alzheimer’s disease: update from the alzgene database and analysis of shared pathways. Int. J. Alzheimers Dis. 2011. 2011: 832–379.
  252. Oosterhuis E.J., Slade K., May P.J.C., Nuttall H.E. Toward an Understanding of Healthy Cognitive Aging: The Importance of Lifestyle in Cognitive Reserve and the Scaffolding Theory of Aging and Cognition. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2023. 78 (5): 777–788.
  253. Oosterhuis E.J., Slade K., Smith E., May P.J.C., Nuttall H.E. Getting the brain into gear: An online study investigating cognitive reserve and word-finding abilities in healthy ageing. PLoS One. 2023. 18 (4): e0280566.
  254. Ozimič A.S., Repovš G. Visual working memory capacity is limited by two systems that change across lifespan. J. Memory and Language. 2020. 112: e104090.
  255. Ota M., Obata T., Akine Y., Ito H., Ikehira H., Asada T. et al. Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage. 2006. 31: 1445–1452.
  256. Padovani A., Costanzi C., Gilberti N., Borroni B. Parkinson’s disease and dementia. Neurol. Sci. 2006. 27 (Suppl. 1): S40–S43.
  257. Palop J.J., Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2016. 17: 777–792.
  258. Pannese E. Morphological changes in nerve cells during normal aging. Brain Struct Funct. 2011. 216: 85–89.
  259. Papadopoli D., Boula, K., Kazak L., Pollak M., Mallette F., Topisirovic I., Hulea L. mTOR as a central regulator of lifespan and aging. F1000 Research 2019. 8: 17196–17217.
  260. Park D.C., Polk T.A., Park R., Minear M., Savage A., Smith M.R. Aging reduces neural specialization in ventral visual cortex. Proceed. Natl. Acad. Sci. U.S.A. 2004. 101: 13091–13095.
  261. Park D.C., Festini S.B. Theories of memory and aging: A look at the past and a glimpse of the future. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2017. 72: 82–90.
  262. Park D.C., Festini S.B. Cognitive health. In: The SAGE Encyclopedia of Lifespan Human Development, ed. M.H. Bornstein (Los Angeles, CA: SAGE2018).
  263. Park J., Carp J., Hebrank A., Park D.C., Polk T.A. Neural specificity predicts fluid processing ability in older adults. J. Neurosci. 2010. 30 (27): 9253–9259.
  264. Pascual A.C., Martín-Moreno A.M., Giusto N.M., de Ceballos M.L., Pasquaré S.J. Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: modulation by cannabinoid agonists. Exp. Gerontol. 2014. 60: 92–99.
  265. Paulsen J.S., Miller A.C., Hayes T., Shaw E. Cognitive and behavioral changes in Huntington disease before diagnosis. In: Handb. Clin. Neurol. 2017. P. 69–91.
  266. Pedersen W.A., Chan S.L., Mattson M.P. A mechanism for the neuroprotective effect of apolipoprotein E: isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 2000. 74: 1426–1433.
  267. Perinelli A., Assecondi S., Tagliabue C.F., Mazza V. Power shift and connectivity changes in healthy aging during resting-state EEG. NeuroImage 2022. 256: 119247.
  268. Pertzov Y., Heider M., Liang Y., Husain M. Effects of healthy ageing on precision and binding of object location in visual short term memory. Psychology and Aging 2015. 30 (1): 26–35.
  269. Peters A. The Effects of Normal Aging on Nerve Fibers and Neuroglia in the Central Nervous System. In: Brain Aging: models, Methods, and Mechanisms, ed. D. R. Riddle (CRC press: Boca Raton, (FL). 2007.
  270. Peters R. Ageing and the brain. Postgrad. Med. J. 2006. 82: 84–88.
  271. Peterson D.J., Naveh-Benjamin M. The role of aging in intra-item and item-context binding processes in visual working memory. J. Exptl. Psychol.: Learning, Memory, and Cognition, 2016. 42 (11): 1713–1730.
  272. Phillips C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast. 2017. 2017: 7260130.
  273. Pimplikar S.W., Nixon R.A., Robakis N.K., Shen J., Tsai L.-H. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J. Neurosci. 2010. 30: 14946–14954.
  274. Plessen K.J., Hugdahl K., Bansal R., Hao X., Peterson B.S. Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span. J. Neurosci. 2014. 34: 6294–6302.
  275. Porcher L., Bruckmeier S., Burbano S.D., Finnell J.E., Gorny N., Klett J. et al. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflamm. 2021. 18 (1): 219.
  276. Porges E.C., Woods A.J., Edden R.A., Puts N.A., Harris A.D., Chen H. et al. Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017. 2: 38–44.
  277. Radin D.P., Zhong S., Purcell R., Lippa A. Acute ampakine treatment ameliorates age-related deficits in long-term potentiation. Biomed. Pharmacother 2016. 84: 806–809.
  278. Raefsky S.M., Mattson M.P. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology and Medicine 2017. 102: 203–216.
  279. Ransohoff R.M. How neuroinflammation contributes to neurodegeneration. Science 2016. 353: 777–783.
  280. Rauschecker J.P. Where, When, and How: are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition. Cortex 2018. 98: 262–268.
  281. Reuter-Lorenz P., Cappell K.A. Neurocognitive aging and the compensation hypothesis. Curr. Dir. Psychol. Sci. 2008. 17: 177–182.
  282. Reuter-Lorenz P.A., Lustig C. Working memory and executive functions in the aging brain. In: R. Cabeza, L. Nyberg, D.C. Park (Eds.) Cognitive neuroscience of aging: Linking cognitive and cerebral aging (2nd ed.). Oxford University Press. 2016.
  283. Rhodes S., Jaroslawska A.J., Doherty J.M., Belletier C., Naveh-Benjamin M., Cowan N., Logie R.H. Storage and processing in working memory: Assessing dualtask performance and task prioritization across the adult lifespan. J. Exp. Psychol. Gen. 2019. 148 (7): 1204–1227.
  284. Richard N., Nikolic M., Mortensen E.L., Osler M., Lauritzen M., Benedek K. Steady-state visual evoked potential temporal dynamics reveal correlates of cognitive decline. Clin. Neurophysiol. 2020. 131 (4): 836–46.
  285. Rieckmann A., Karlsson S., Karlsson P., Brehmer Y., Fischer H., Farde L. et al. Dopamine D1 receptor associations within and between dopaminergic pathways in younger and elderly adults: links to cognitive performance. Cereb. Cortex 2011. 21: 2023–2032.
  286. Robillard J.M., Gordon G.R., Choi H.B., Christie B.R., MacVicar B.A. Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One 2011. 6: e20676.
  287. Rolls E.T. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog. Neurobiol. 2022. 217: 102334.
  288. Rolls E.T., Zhang R., Deco G., Vatansever D., Feng J. Selective Brain Activations and Connectivities Related to the Storage and Recall of Human Object-Location, Reward-Location, and Word-Pair Episodic Memories. Hum. Brain Mapp. 2024. 45 (15): e70056.
  289. Rossini P.M., Rossi S., Babiloni C., Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog. Neurobiol. 2007. 83 (6): 375–400.
  290. Rosenzweig E.S., Barnes C.A. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog. Neurobiol. 2003. 69: 143–179.
  291. Rosenzweig E.S., Rao G., McNaughton B.L., Barnes C.A. Role of temporal summation in age-related long-term potentiation-induction deficits. Hippocampus 1997. 7: 549–558.
  292. Rock C., Apicella A.J., Callosal projections drive neuronal-specific responses in the mouse auditory cortex. J. Neurosci. 2015. 35 (17): 6703–6713.
  293. Ryan B.J., Hoek, S., Fon E.A., Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci. 2015. 40: 200–210.
  294. Sabuncu Mert R., Desikan R.S, Sepulcre J., Yeo B.T.Y., Liu H., Schmansky N.J. et al. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch. Neurol. 2011. 68 (8): 1040–1048.
  295. Saverino C., Fatima Z., Sarraf S., Oder A., Strother S.C., Grady C.L. The associative memory deficit in aging is related to reduced selectivity of brain activity during encoding. J. Cogn. Neurosci. 2016. 28: 1331–1344.
  296. Savarimuthu A., Ponniah R.J. Cognition and Cognitive Reserve. Integr. Psychol. Behav. Sci. 2024. 58 (2): 483–501.
  297. Sauerbier A., Jenner P., Todorova A., Chaudhuri K.R. Non motor subtypes and Parkinson’s disease. Parkinsonism. Relat. Disord. 2016. 22 (Suppl. 1): S41–S46.
  298. Schildknecht S., Gerding H.R., Karreman C., Drescher M., Lashuel H.A., Outeiro T.F. et al. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J. Neurochem. 2013. 125: 491–511.
  299. Schmidt R., Schmidt H., Haybaeck J., Loitfelder M., Weis S., Cavalieri M. et al. Heterogeneity in age-related white matter changes. Acta Neuropathol. 2011. 122: 171–185.
  300. Schmitt H.P. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease. Med. Hypotheses. 2005. 65 (6): 1106–1119.
  301. Schultz W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 2007. 30: 259–288.
  302. Seib D.R., Martin-Villalba A. Neurogenesis in the Normal Ageing Hippocampus: A Mini Review. Gerontology 2015. 61: 327–335.
  303. Segovia G., Porras A., Del Arco A., Mora F. Glutamatergic neurotransmission in aging: a critical perspective. Mech. Ageing Dev. 2001. 122: 1–29.
  304. Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016. 8: 595–608.
  305. Sha Z., Schijven D., Carrion-Castillo A., Joliot M., Mazoyer B., Fisher S.E. et al. The genetic architecture of structural left-right asymmetry of the human brain. Nat. Hum. Behav. 2021. 5 (9): 1226–1239.
  306. Schapira A.H., Olanow C.W., Greenamyre J.T., Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 2014. 384: 545–555.
  307. Schultz D.H., Gansemer A., Allgood K., Gentz M., Secilmis L., Deldar Z. et al. Second language learning in older adults modulates Stroop task performance and brain activation. Front. Aging Neurosci. 2024. 16: 1398015.
  308. Segovia G., Porras A., Del Arco A., Mora F. Glutamatergic neurotransmission in aging: a critical perspective. Mech. Ageing Dev. 2001. 122: 1–29.
  309. Shankar S., Teyler T.J., Robbins N. Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J. Neurophysiol. 1998. 79: 334–341.
  310. Shetty M.S., Sharma M., Sajikumar S. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell. 2017. 16: 136–148.
  311. Shimabukuro M.K., Langhi L.G., Cordeiro I., Brito J.M., Batista C.M., Mattson M.P., Coelho V de M. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci. Rep. 2016. 6: 23795.
  312. Simpson I.A., Chundu K.R., Davies-Hill T., Honer W.G., Davies, P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann. Neurol. 1994. 35: 546–551.
  313. Sorrells S.F., Paredes M.F., Cebrian-Silla A., Sandoval K., Qi D., Kelley K.W. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018. 555 (7696): 377–381.
  314. Spalding K.L., Bergmann O., Alkass K., Bernard S., Salehpour M., Huttner H.B. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013. 153: 1219.
  315. Spiegel A.M., Koh M.T., Vogt N.M., Rapp P.R., Gallagher M. Hilar interneuron ulnerability distinguishes aged rats with memory impairment. J. Comp. Neurol. 2013. 521: 3508–3523.
  316. Stadler J., Brechmann A., Angenstein N. Effect of age on lateralized auditory processing. Hear. Res. 2023. 434: 108791.
  317. Spreng R.N., Wojtowicz M., Grady C.L. Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav. Rev. 2010. 34 (8): 1178–1194.
  318. Stephens M.L., Quintero J.E., Pomerleau F., Huettl P., Gerhardt G.A. Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol. Aging. 2011. 32 (5): 811–820.
  319. Stern Y. Cognitive reserve: Implications for assessment and intervention. Folia Phoniatrica et Logopaedica, 2013. 65 (2): 49–54.
  320. Stern Y., Arenaza-Urquijo E.M., Bartrés-Faz D., Bellevill S., Cantilon M., Chetelat G. et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s and Dementia. 2018. 1–7.
  321. Storga D., Vrecko K., Birkmayer J.G., Reibnegger G. Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci. Lett. 1996. 203 (1): 29–32.
  322. Stout-Delgado H.W., Du W., Shirali A.C., Booth C.J. Goldstein D.R. Aging promotes neutrophil-induced mortality by augmenting IL-17 production during viral infection. Cell Host. Microbe. 2009. 6 (5): 446–456.
  323. Stranahan A.M., Norman E.D., Lee K., Cutler R.G., Telljohann R.S., Egan J.M., Mattson M.P. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008. 18: 1085–1088.
  324. Shtoots L., Barzilay R., Gigi T., Kostovetsky V., Pollock A., Levy D.A. Theta Stimulation Enhances Early Consolidation of Semantic Memory. J. Cogn. Neurosci. 2025. 14: 1–15.
  325. Sun W., McConnell E., Pare J.F., Xu Q., Chen M., Peng W. et al. Glutamatedependent neuroglial calcium signaling differs between young and adult brain. Science 2013. 339: 197–200.
  326. Surmeier D.J., Schumacker P.T., Guzman J.D., Ilijic E., Yang B., Zampese E. Calcium and Parkinson’s disease. Biochem. Biophys. Res. Commun. 2017. 483: 1013–1019.
  327. Swanson H.L. Verbal and visual-spatial working memory: What develops over a life span? Developmental Psychol. 2017. 53 (5): 971–995.
  328. Sweeney M.D., Kisler K., Montagne A., Toga A.W., Zlokovic B.V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 2018. 21: 1318–1331.
  329. Swerdlow R.H. Bioenergetics and metabolism: a bench to bedside perspective. J. Neurochem. 2016. 139 (Suppl 2): 126–135.
  330. Taniguchi S., Mizuno H., Kuwahara M., Ito K. Early attenuation of long-term potentiation in senescence-accelerated mouse prone 8. Exp. Brain Res. 2015. 233 (11): 3145–3152.
  331. Tang L.H., Aizenman E. Long-lasting modification of the N-methyl-D aspartate receptor channel by a voltage-dependent sulfhydryl redox process. Mol. Pharmacol. 1993. 44: 473e8.
  332. Texel S.J., Mattson M.P. Impaired adaptive cellular responses to oxidative stress and the pathogenesis of Alzheimer’s disease. Antioxid. Redox Signal. 2011. 14: 1519–1534.
  333. Temido-Ferreira M., Ferreira D.G., Batalha V.L., Marques-Morgado I., Coelho J.E., Pereira P. et al. Age-related shift in ltd is dependent on neuronal adenosine a2a receptors interplay with mglur5 and nmda receptors. Mol. Psychiatry 2020. 25: 1876–1900.
  334. Tong T., Gao Q., Guerrero R., Ledig C., Chen L., Rueckert D. Alzheimer’s disease neuroimaging initiative. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease. Ieee transact. Biomed. Engineering. 2017. 64 (1): 155–165.
  335. Trimper J.B., Galloway C.R., Jones A.C., Mandi K., Manns J.R. Gamma Oscillations in Rat Hippocampal Subregions Dentate Gyrus, CA3, CA1, and Subiculum Underlie Associative Memory Encoding. Cell Rep. 2017. 21 (9): 2419–2432.
  336. Tsukiura T., Sekiguchi A., Yomogida Y., Nakagawa S., Shigemune Y., Kambara T. et al. Effects of aging on hippocampal and anterior temporal activations during successful retrieval of memory for face–name associations. J. Cogn. Neurosci. 2011. 23: 200–213.
  337. Utkin Y.N. Aging Affects Nicotinic Acetylcholine Receptors in Brain. Cent. Nerv. Syst. Agents Med. Chem. 2019. 19: 119–124.
  338. Vadodaria K.C., Jessberger S. Functional neurogenesis in the adult hippocampus: Then and now. Front. Neurosci. 2014. 7: a018812.
  339. Valla J., Berndt J.D., Gonzalez-Lima F. Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J. Neurosci. 2001. 21: 4923–4930.
  340. Vivar C., Potter M. C., van Praag H. All about running: Synaptic plasticity, growth factors and adult hippocampal neurogenesis. Current Topics in Behavioral Neurosciences. 2012. 15: 189–210.
  341. Vogt D.L., Thomas D., Galvan V., Bredesen D.E., Lamb B.T., Pimplikar S.W. Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiol Aging. 2011. 32 (9): 1725–1729.
  342. Vossel K.A., Tartaglia M.C., Nygaard H.B., Zeman A.Z., Miller B.L. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017. 16: 311–322.
  343. Wang J., Fang, Y., Wang X., Yang H., Yu X., Wang H. Enhanced γ activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with Alzheimer’s disease. Front. Aging Neurosci. 2017. 9: 243.
  344. Wang Z., Kennedy B.K., Wong L.W., Sajikumar S. Aging inverts the effects of p75(NTR)-modulated mTOR manipulation on hippocampal neuron synaptic plasticity in male mice. FASEB J. 2023. 37: e23067.
  345. Wang S., Chen X., Zhang Y., Gao Y., Gou L., Lei J. Characterization of cortical volume and whole-brain functional connectivity in Parkinson’s disease patients: a MRI study combined with physiological aging brain changes. Front. Neurosci. 2024. 18: 1451948.
  346. Weil R.S., Costantini A.A., Schrag A.E. Mild cognitive impairment in Parkinson’s disease-what is it? Curr. Neurol. Neurosci. Rep. 2018, 18: 17.
  347. West M.J., Coleman P.D., Flood D.G., Troncoso J.C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet 1994. 344 (8925): 769–772.
  348. Wilson I.A., Ikonen S., Gureviciene I., McMahan R.W., Gallagher M., Eichenbaum H., Tanila H. Cognitive aging and the hippocampus: how old rats represent new environments. J. Neurosci. 2004. 24: 3870–3878.
  349. Wilson R.S., Nag S., Boyle P.A., Hizel L.P., Yu L., Buchman A.S. et al. Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology 2013. 80: 1202–1208.
  350. Yang J.L., Lin Y.T., Chuang P.C., Bohr V.A., Mattson M.P. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med. 2014. 16: 161–174.
  351. Yin J. A., Liu X. J., Yuan J., Jiang J. Cai S.Q. Longevity manipulations differentially affect serotonin/dopamine level and behavioral deterioration in aging Caenorhabditis elegans. J. Neurosci. 201434: 3947–3958.
  352. Zharikov A.D., Cannon J.R., Tapias V., Bai Q., Horowitz M.P., Shah V. et al. shRNA targeting a-synuclein prevents neurodegeneration in a Parkinson’s disease model. J. Clin. Invest. 2015. 125: 2721–2735.
  353. Zatorre R.J., Belin P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 2001. 11: 946–953.
  354. Zhang S., Eitan E., Wu T.Y., Mattson M.P. Intercellular transfer of pathogenic a-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol. Aging 2018. 61: 52–65.
  355. Zheng X.Y., Zhang H.C., Lv Y.-D., Jin F.Y., Wu X.J., Zhu J., Ruan Y. Levetiracetam alleviates cognitive decline in Alzheimer’s disease animal model by ameliorating the dysfunction of the neuronal network. Front. Aging Neurosci. 2022. 14: 888784.
  356. Zhuang H., Cao X., Tang X., Zou Y., Yang H., Liang Z. et al. Investigating metabolic dysregulation in serum of triple transgenic Alzheimer’s disease male mice: implications for pathogenesis and potential biomarkers. Amino Acids. 2024. 56 (1): 10.
  357. Zullo J.M., Drake D., Aron L., O’Hern P., Dhamne S.C., Davidsohn N. et al. Regulation of lifespan by neural excitation and REST. Nature 2019. 574: 359–364.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».