Participation of astroglia in morphological and functional integration of neurotransplants with the recipient’s brain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Histological and electron microscopic studies of dentate fascia neurotransplants in the somatosensory region of the rat neocortex were performed. It was shown that mature nerve tissue developed in the transplants with reproduction of the organotypic characteristics of differentiated neurons and glial cells. Particular attention was paid to the study of the cellular organization of the boundary between the transplanted and neocortical tissues (interface) as well as the possibility of neuronal processes growing through it. The leading role in the integrative process belonged to different subpopulations of astrocytes. Mature protoplasmic and fibrous astrocytes, as well as astrocytic precursors, and ependymal cells were identified at different sites of the interface. The cellular composition of the border influenced the degree of integration of the transplants with the adjacent brain, ranging from maximum integration in the astrocytic type of border to limited exchange of axonal and dendritic processes in the ependymal type. Fibrous astrocyte processes accompanied and guided bundles of axons and dendrites through interface. The only barrier to the growing nerve processes were the interface regions, into which large blood vessels penetrated from the pia mater.

About the authors

Z. N. Zhuravleva

Laboratory of Systemic Neuronal Organization, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia

Author for correspondence.
Email: zina_zhur@mail.ru
Pushchino, Moscow Region, Russia

References

  1. Александрова М.А., Сухинич К.К. Астроциты мозга – свита делает короля. Онтогенез. 2022. 53 (4): 265–286.
  2. Журавлева З.Н. Гиппокамп и нейротрансплантация. Журн. высш. нервн. деят. им. И.П. Павлова. 2004. 54 (2): 149–162.
  3. Журавлева З.Н. Синаптические контакты нейронов трансплантатов зубчатой фасции с неспецифическими мишенями в неокортексе реципиентов. Онтогенез. 2002. 33 (3): 230–235.
  4. Лосева Е.В., Подгорный О.В., Полтавцева Р.А., Марей М.В., Логинова Н.А., Курская О.В., Сухих Г.Т., Чайлахян Р.К., Александрова М.А. Эффекты нейротрансплантации культивируемых нейральных и мезенхимальных стволовых клеток человека на обучение и состояние мозга крыс после гипоксии. Рос. физиол. журн. им. И.М. Сеченова. 2011. 97 (2): 155–168.
  5. Сухинич К.К., Шакирова К.М., Дашинимаев Э.Б., Александрова М.А. Развитие 3D церебральных агрегатов в желудочках мозга взрослых мышей. Онтогенез. 2021. 52 (3): 195–207.
  6. Blackstad T.W., Kjaerheim A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J. Comp. Neurol. 1961. 117 (2): 133–159.
  7. Boghdadi A.G., Teo L., Bourne J.A. The neuroprotective role of reactive astrocytes after central nervous system injury. J. Neurotraum. 2020. 37: 681–691.
  8. Bragin A., Takács J., Vinogradova O., Zhuravleva Z.N., Hamori J. Number of GABA-immunopositive and GABA-immunonegative neurons in various types of neocortical transplants. Exp. Brain Res. 1991. 85 (1): 114–128. https://doi.org/10.1007/BF00229992
  9. Dias D.O., Göritz C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol. 2018. 68–69: 561–570. https://doi.org/10.1016/j.matbio.2018.02. 009
  10. Escartin C., Galea E., Lakatos A. O’Callaghan J.P., Petzold G.C., SerranoPozo A. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021. 24: 312–325. https://doi.org/10.1038/s41593-020-00783-4
  11. Fitch M.T., Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 2008. 209: 294–301.
  12. Gage F.H. Neurogenesis in the adult brain. J. Neurosci. 2002. 22 (3): 612–613. https://doi.org/10.1523/JNEUROSCI.22-03-00612.2002
  13. Groh A.M.R., Song Y.L., Tea F., Lu B., Huynh S., Afanasiev E. et al. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol. 2024. 148 (1): 39. https://doi.org/10.1007/s00401-024-02784-0.
  14. Hamlyn L.H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Anat. (Lond.) 1962. 96 (1): 112–120.
  15. Han Q., Xie Y., Ordaz J.D., Huh A.J., Huang N., Wu W. et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 2020. 31: 623–641.e8. https://doi.org/10.1016/j. cmet.2020.02.002
  16. Hart C.G., Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J. Neurosci. Res. 2021. 99 (10): 2427–2462. https://doi.org/10.1002/jnr.24922
  17. Kumar A., Fontana I.C., Nordberg A. Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem. 2023. 164 (3): 309–324. https://doi.org/10.1111/jnc.15565
  18. Ma S., Kwon H.J., Huang Z. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLoS ONE. 2012. 7 (10): e48001. https://doi.org/10.1371/journal.pone.0048001
  19. Park T.-Y., Jeon J., Cha Y., Kim K.-S. Past, present, and future of cell replacement therapy for parkinson’s disease: a novel emphasis on host immune responses. Cell Res. 2024. 34 (7): 479–492.
  20. Pavlou M.A.S., Grandbarbe L., Buckley N.J., Niclou S.P., Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog. Neurobiol. 2019. 174: 36–52. https://doi.org/10.1016/j.pneurobio.2018.12.007
  21. Rao K.V., Panickar K.S., Jayakumar A.R. et al. Astrocytes protect neurons from ammonia toxicity. Neurochem. Res. 2005. 30: 1311–1318.
  22. Šimončičová E., Henderson Pekarik K., Vecchiarelli H.A., Lauro C., Maggi L., Tremblay M.È. Adult neurogenesis, learning and memory. Adv. Neurobiol. 2024. 37: 221–242. https://doi.org/10.1007/978-3-031-55529-9_13
  23. Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell. 2023. 30 (5): 512–529. https://doi.org/10.1016/j.stem.2023.03.017
  24. Villarreal A., Vogel T. Different Flavors of Astrocytes: Revising the origins of astrocyte diversity and epigenetic signatures to understand heterogeneity after injury. Int. J. Mol. Sci. 2021. 22 (13): 6867. https://doi.org/10.3390/ijms22136867
  25. Zaqout S., Kaindl A.M. Golgi-Cox staining step by step. Front. Neuroanat. 2016. 10: Article 38. https://doi.org/10.3389/fnana.2016.00038
  26. Zhang Y., Li B., Cananzi S., Han C., Wang L.L., Zou Y. et al. A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc. Natl. Acad. Sci. USA. 2022. 119 (11): e2107339119. https://doi.org/10.1073/pnas.2107339119

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».