Combined Effect of High-Fat Diet and Chronic Sleep Restriction on Neurophysiological Parameters of Wistar Rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Epidemiological studies have identified a functional bidirectional relationship between chronic sleep loss and the development of obesity. However, it remains unclear whether these factors amplify the damaging effects of each other on neurophysiological functions. This study aimed to investigate the combined effects of high-fat diet (HFD) and chronic sleep restriction (SR) on sleep characteristics and destructive changes in the locus coeruleus in male Wistar rats. Consumption of HFD for 10 weeks did not lead to changes in the organization of the wake-sleep cycle compared to control animals receiving standard dry chow (SD). However, during SR in a polyphasic regimen of 3 h of wakefulness and 1 h of sleep opportunity using a rocking platform for 5 days, the compensatory increase in slow-wave activity in response to lost sleep was less pronounced in rats on HFD during one-hour rest periods than in rats on SD. During the recovery period, a decrease in the amount of deep slow-wave sleep (SWS) in both groups was detected. However, after 14 days, this parameter reached the baseline level in the rats on SD, whereas this did not occur in the rats on HFD. It was found that SR was accompanied by neuronal death in the locus coeruleus, and the combination of HFD and SR augmented neurodegeneration. Thus, we demonstrated for the first time that chronic SR and HFD leads to pronounced disturbances in the homeostatic mechanisms of SWS regulation and subsequent deterioration of sleep quality, which could be a consequence of progressive dysfunction of the noradrenergic system of the locus coeruleus. The identification of the mutual negative influence of HFD and SR on sleep neurophysiology can be considered as a new risk factor for the development of metabolic diseases and other disorders of CNS functions.

About the authors

M. A. Guzeev

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Email: miguz85@mail.ru
Saint Petersburg, Russia

K. V. Lapshina

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Email: miguz85@mail.ru
Saint Petersburg, Russia

K. V. Derkach

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Email: miguz85@mail.ru
Saint Petersburg, Russia

A. O. Shpakov

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Email: miguz85@mail.ru
Saint Petersburg, Russia

I. V. Ekimova

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Author for correspondence.
Email: miguz85@mail.ru
Saint Petersburg, Russia

References

  1. Алфёрова В.И., Мустафина С.В. Распространенность ожирения во взрослой популяции Российской Федерации (обзор литературы). Ожирение и метаболизм. 2022. 19 (1): 96–105.
  2. Гузеев М.А., Курмазов Н.С., Екимова И.В. Хроническое ограничение сна у крыс приводит к ослаблению компенсаторных реакций в ответ на острую депривацию сна. Журнал неврологии и психиатрии им. CC Корсакова. 2023. 123 (5 вып. 2): 35–42.
  3. Гузеев М.А., Курмазов Н.С., Симонова В.В., Пастухов Ю.Ф., Екимова И.В. Создание модели хронического недосыпания для трансляционных исследований. Журнал неврологии и психиатрии им. CC Корсакова. 2021. 121 (4 вып. 2): 6–13.
  4. Andersen M.L., Pires G.N., Tufik S. The Impact of Sleep: From Ancient Rituals to Modern Challenges. Sleep Sci. 2024. 17 (2): e203-e207.
  5. Boutari C., Mantzoros C.S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022. 133: 155217.
  6. Chi H., Chang H.Y., Sang T.K. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci. 2018. 19 (10): 3082.
  7. Clemente-Suárez V.J., Beltrán-Velasco A.I., Redondo-Flórez L., Martín-Rodríguez A., Tornero-Aguilera J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients. 2023. 15 (12): 2749.
  8. Cooper C.B., Neufeld E.V., Dolezal B.A., Martin J.L. Sleep deprivation and obesity in adults: a brief narrative review. BMJ open sport & exercise medicine. 2018. 4 (1): e000392.
  9. Derkach K., Zakharova I., Zorina I., Bakhtyukov A., Romanova I., Bayunova L., Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One. 2019. 14 (3): e0213779.
  10. Derkach K.V., Pechalnova A.S., Sorokoumov V.N., Zorina I.I., Morina I.Y., Chernenko E.E. et al. Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci. 2025. 26 (2): 703.
  11. Engeda J., Mezuk B., Ratliff S., Ning Y. Association between duration and quality of sleep and the risk of pre-diabetes: evidence from NHANES. Diabet Med. 2013. 30 (6): 676–680.
  12. Fortin S.M., Chen J.C., Petticord M.C., Ragozzino F.J., Peters J.H., Hayes M.R. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. Science Advances. 2023. 9 (38): eadh0980.
  13. Hauglund N.L., Andersen M., Tokarska K., Radovanovic T., Kjaerby C., Sørensen F.L. et al. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep. Cell. 2025. 188 (3): 606–622.
  14. Kim L., Alexandre C., Pho H., Latremoliere A., Polotsky V., Pham L. Diet-induced obesity leads to sleep fragmentation independently of the severity of sleep-disordered breathing. Journal of applied physiology. 2022. 133 (6): 1284–1294.
  15. Letra L., Sena C. Cerebrovascular Disease: Consequences of Obesity Induced Endothelial Dysfunction. Advances in Neurobiology. 2017. 19: 163–189.
  16. Luppi M., Cerri M., Martelli D., Tupone D., Del Vecchio F., Di Cristoforo A. et al. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet. Behav Brain Res. 2014. 258: 145–152.
  17. Mahmoud R., Kimonis V., Butler M.G. Genetics of Obesity in Humans: A Clinical Review. Int J Mol Sci. 2022. 23 (19): 11005.
  18. Maness E.B., Burk J.A., McKenna J.T., Schiffino F.L., Strecker R.E., McCoy J.G. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull. 2022. 188: 47–58.
  19. Megirian D., Dmochowski J., Farkas G.A. Mechanism controlling sleep organization of the obese Zucker rats. J. Appl Physiol (1985). 1998. 84 (1): 253–256.
  20. Neto A., Fernandes A., Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci. 2023. 17: 1294420.
  21. Pazi M.B., Ekimova I.V. Intranasal administration of GRP78 protein (HSPA5) counteracts the neurodegeneration in the locus coeruleus in a model of chronic sleep restriction in rats. J Evol Biochem Phys. 2024. 60: 1630–1641.
  22. Rodrigues G.D., Fiorelli E.M., Furlan L., Montano N., Tobaldini E. Obesity and sleep disturbances: The “chicken or the egg” question. Eur J Intern Med. 2021. 92: 11–16.
  23. Rogers E.M., Banks N.F., Jenkins N.D.M. The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review. Diabetes Metab Res Rev. 2024. 40 (2): e3667.
  24. Scharbarg E., Daenens M., Lemaître F., Geoffroy H., Guille-Collignon M., Gallopin T., Rancillac A. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose. Scientific Reports. 2016. 6: 19107.
  25. Sherin J.E., Shiromani P.J., McCarley R.W., Saper C.B. Activation of ventrolateral preoptic neurons during sleep. Science. 1996. 271 (5246): 216–219.
  26. Spiegel K., Knutson K., Leproult R., Tasali E., Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985). 2005. 99 (5): 2008–2019.
  27. Versace S., Pellitteri G., Sperotto R., Tartaglia S., Da Porto A., Catena C. et al. A state-of-art review of the vicious circle of sleep disorders, diabetes and neurodegeneration involving metabolism and microbiota alterations. International Journal of Molecular Sciences. 2023. 24 (13): 10615.
  28. Xie L., Kang H., Xu Q., Chen M.J., Liao Y., Thiyagarajan M. et al. Sleep drives metabolite clearance from the adult brain. Science. 2013. 342 (6156): 373–377.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».