Animal image priming effects in basic–level and superordinate-level categorization
- Autores: Gerasimenko N.Y.1, Kushnir A.B.1, Mikhailova E.S.1
-
Afiliações:
- Institute of Higher Nervous Activity and Neurophysiology of the RAS
- Edição: Volume 75, Nº 5 (2025)
- Páginas: 621-635
- Seção: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://journals.rcsi.science/0044-4677/article/view/320671
- DOI: https://doi.org/10.31857/S0044467725050104
- ID: 320671
Citar
Resumo
The effect of priming with an animal image versus an object image on basic-level and superordinate-level categorization parameters was investigated in 19 healthy young subjects. For both basic- and superordinate-level categorization, priming with an animal image, as more evolutionarily significant, causes an increase in the amplitude of early N50 negativity to the salient stimulus in temporal areas, indicating an increase in attention. The effect of the animal prime on behavioral responses and on later potential components depends on the categorization level. In basic-level categorization there is an increase in motor reaction time, and in superordinate-level categorization there is an increase in accuracy. During basic-level categorization with animal primes, an increase in the amplitudes of the occipitotemporal P130 and frontal N130 components is accompanied by a decrease in central late positivity (LP). The increased P130 and N130 amplitudes may indicate an increased difficulty in separating significant and insignificant visual information due to a shift of attention to the prime. The decrease in LP amplitude is probably related to difficulties in processing the stimulus at the stage of comparing it with the category description stored in memory. During superordinate-level categorization, the animal prime, compared to the object prime, induces increases in the amplitude of the frontal P50, occipital P130, and central LP components. Presumably, the increase in P50 reflects the implicit categorization of the prime by its low-frequency description, which reduces prime-stimulus interference at later stages of processing. The increase in LP amplitude reflects the facilitated stage of matching the stimulus to the categorization description, as well as an increase in endogenous attention during processing of the animal prime.
Palavras-chave
Sobre autores
N. Gerasimenko
Institute of Higher Nervous Activity and Neurophysiology of the RAS
Email: nger@mail.ru
Moscow, Russia
A. Kushnir
Institute of Higher Nervous Activity and Neurophysiology of the RAS
Email: nger@mail.ru
Moscow, Russia
E. Mikhailova
Institute of Higher Nervous Activity and Neurophysiology of the RAS
Autor responsável pela correspondência
Email: nger@mail.ru
Moscow, Russia
Bibliografia
- Герасименко Н.Ю., Кушнир А.Б., Михайлова Е.С. Маскирующие эффекты нерелевантной зрительной информации в условиях базовой и суперординатной категоризации сложных изображений. Физиология человека. 2019. 45 (1): 5–18.
- Калинин С.А., Герасименко Н.Ю., Славуцкая А.В., Михайлова Е.С. Поведенческие и электрографические характеристики опознания сложных изображений в условиях их прямой маскировки. Влияние категориальной близости целевого и маскирующего стимулов. Физиология человека. 2014. 40 (4): 5–17.
- Мошникова Н.Ю., Кушнир А.Б., Михайлова Е.С. Психофизиологическое исследование базовой и суперординатной категоризации предметов, осложненной влиянием предшествующего нерелевантного стимула. Физиология человека. 2022. 48 (6): 44–56.
- Abundis-Gutiérrez A., Checa P., Castellanos C., Rosario Rueda M. Electrophysiological correlates of attention networks in childhood and early adulthood. Neuropsychologia. 2014. 57: 78‒92.
- Ashtiani M.N., Kheradpisheh S.R., Masquelier T., Ganjtabesh M. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer. Front. Psychol. 2017. 8: 1261.
- Bar M., Kassam K.S., Ghuman A.S., Boshyan J., Schmid A.M., Dale A.M. et al. Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. U. S. A. 2006. 103 (2): 449–454.
- Beck A.-K., Czernochowski D., Lachmann T., Barahona-Correa B., Carmo J.C. Is the dolphin a fish? ERP evidence for the impact of typicality during early visual processing in ultra-rapid semantic categorization in autism spectrum disorder. J. Neurodev. Disord. 2022. 14 (1): 46.
- Carbine K.A., Rodeback R., Modersitzki E., Miner M., LeCheminant J.D., Larson M.J. The utility of event-related potentials (ERPs) in understanding food-related cognition: A systematic review and recommendations. Appetite. 2018. 128: 58–78.
- Fabre-Thorpe M. The characteristics and limits of rapid visual categorization. Front. Psychol. 2011. 2: 243.
- Fernández-Folgueiras U., Hernández-Lorca M., Méndez-Bértolo C., Álvarez F., Giménez-Fernández T., Carretié L. Exogenous Attention to Emotional Stimuli Presenting Realistic (3D) Looming Motion. Brain Topogr. 2022. 35 (5–6): 599–612.
- Fernández-Folgueiras U., Méndez-Bértolo C., Hernández-Lorca M., Bódalo C., Giménez-Fernández T., Carretié L. Realistic (3D) looming of emotional visual stimuli: Attentional effects at neural and behavioral levels. Psychophysiology. 2021. 58 (5): e13785.
- Guerrero G., Calvillo D.P. Animacy increases second target reporting in a rapid serial visual presentation task. Psychon. Bull. Rev. 2016. 23 (6): 1832–1838.
- He C., Cheung O.S. Category selectivity for animals and man-made objects: Beyond low- and mid-level visual features. J. Vis. 2019. 19 (12): 22.
- He C., Hung S.-C., Cheung O.S. Roles of Category, Shape, and Spatial Frequency in Shaping Animal and Tool Selectivity in the Occipitotemporal Cortex. J. Neurosci. Off. J. Soc. Neurosci. 2020. 40 (29): 5644–5657.
- Jackson R.E., Calvillo D.P. Evolutionary relevance facilitates visual information processing. Evol. Psychol. an Int. J. Evol. approaches to Psychol. Behav. 2013. 11 (5): 1011–1026.
- Karst A.T., Clapham E.S. An examination of differential repetition priming effects for natural and man-made objects. J. Gen. Psychol. 2019. 146 (4): 339–364.
- Key A.P., Jones D., Zengin-Bolatkale H., Roof E., Hunt-Hawkins H. Visual food cue processing in children with Prader-Willi Syndrome. Physiol. Behav. 2021. 238: 113492.
- Loucks J., Reise B., Gahite R., Fleming S. Animate monitoring is not uniform: implications for the animate monitoring hypothesis. Front. Psychol. 2023. 14: 1146248.
- Macé M.J.-M., Joubert O.R., Nespoulous J.-L., Fabre-Thorpe M. The time-course of visual categorizations: you spot the animal faster than the bird. PLoS One. 2009. 4 (6): e5927.
- McLean D., Nuthmann A., Renoult L., Malcolm G.L. Expectation-based gist facilitation: Rapid scene understanding and the role of top-down information. J. Exp. Psychol. Gen. 2023. 152 (7): 1907–1936.
- Moon A., He C., Ditta A.S., Cheung O.S., Wu R. Rapid category selectivity for animals versus man-made objects: An N2pc study. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2022. 171: 20–28.
- Neuhaus A.H., Urbanek C., Opgen-Rhein C., Hahn E., Ta T.M., Koehler S. et al. Event-related potentials associated with Attention Network Test. Int J Psychophysiol. 2010. 76 (2): 72‒79.
- New J., Cosmides L., Tooby J. Category-specific attention for animals reflects ancestral priorities, not expertise. Proc. Natl. Acad. Sci. U. S. A. 2007. 104 (42): 16598–16603.
- Pérez-Gay Juárez F., Sicotte T., Thériault C., Harnad S. Category learning can alter perception and its neural correlates. PLoS One 2019. 14 (12): e0226000.
- Proverbio A.M., Del Zotto M., Zani A. The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition. BMC Neurosci. 2007. 8: 24.
- Rabi R., Joanisse M.F., Zhu T., Minda J.P. Cognitive changes in conjunctive rule-based category learning: An ERP approach. Cogn. Affect. Behav. Neurosci. 2018. 18 (5): 1034–1048.
- Taniguchi K., Kuraguchi K., Takano Y., Itakura S. Object Categorization Processing Differs According to Category Level: Comparing Visual Information Between the Basic and Superordinate Levels. Front. Psychol. 2020. 11: 501.
- van Hoef R., Lynott D., Connell L. Timed picture naming norms for 800 photographs of 200 objects in English. Behav. Res. Methods. 2024. 56 (7): 6655–6672.
- Vogel E.K., Luck S.J. The visual N1 component as an index of a discrimination process. Psychophysiology. 2000. 37 (2): 190‒203.
- Yang J., Wang A., Yan M., Zhu Z., Chen C., Wang Y. Distinct processing for pictures of animals and objects: evidence from eye movements. Emotion. 2012. 12 (3): 540–551.
- Zani A., Marsili G., Senerchia A., Orlandi A., Citron F.M.M., Rizzi E., Proverbio A.M. ERP signs of categorical and supra-categorical processing of visual information. Biol. Psychol. 2015. 104: 90–107.
Arquivos suplementares
