Influence of math anxiety on the performance of arithmetic operations at unconscious level

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Math anxiety (MA) is associated with concern and fear about mathematical tasks. The aim of the study was to investigate the electrophysiological correlates of conscious and unconscious processes during the performance of mathematical operations depending on the level of mathematical anxiety. Participants were presented with addition problems followed by correct and incorrect answers. Participants with low level of MA demonstrated significantly more positive amplitude of event-related potentials when presented with the correct answer compared to the incorrect one in the interval from 200–300 ms after the solution presentation onset (N400/P300 wave), both in the conscious (unmasked presentation) and unconscious perception blocks (masked presentation). In the group of participants with high level of MA, such a difference was observed only in the conscious perception condition. Additionally, participants with high level of MA showed a significant difference between correct and incorrect answers in the interval from 450–650 ms during unconscious perception of problems, indicating the presence of an arithmetic effect in the late positive component (LPC) wave. Thus, the obtained results may indicate the predominant use of procedural strategies when solving simple problems by participants with a high level of MA. Participants with a low level of MA demonstrate correlates of automatic retrieval of the answer directly from long-term memory even with unconscious perception of stimuli.

全文:

受限制的访问

作者简介

V. Knyazeva

Saint Petersburg State University

编辑信件的主要联系方式.
Email: v.m.knyazeva@spbu.ru
俄罗斯联邦, Saint Petersburg

N. Polyakova

Saint Petersburg State University

Email: v.m.knyazeva@spbu.ru
俄罗斯联邦, Saint Petersburg

D. Fedorov

Saint Petersburg State University

Email: v.m.knyazeva@spbu.ru
俄罗斯联邦, Saint Petersburg

D. Sitnikova

Saint Petersburg State University

Email: v.m.knyazeva@spbu.ru
俄罗斯联邦, Saint Petersburg

A. Alexandrov

Saint Petersburg State University

Email: v.m.knyazeva@spbu.ru
俄罗斯联邦, Saint Petersburg

参考

  1. Будакова А.В., Лиханов М.В., Блониевски Т., Малых С.Б., Ковас Ю.В. Математическая тревожность: этиология, развитие и связь с успешностью в математике. Вопросы психологии. 2020. 1: 109–118.
  2. Полякова Н.В., Александров А.А. Использование компонента N400 для анализа математических вычислений на бессознательном уровне. Журн. высш. нервн. деят. им. И.П. Павлова. 2019. 69 (3): 325–333.
  3. Иваницкий Г.А. Быстрая система обработки информации и осознание стимулов. Комментарий к статьям О.В. Щербаковой и Н.В. Поляковой с соавторами. Журн. высш. нервн. деят. им. И.П. Павлова. 2019. 69 (3): 339–342.
  4. Alexander L., Martray C. The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Meas. Eval. Couns. Dev. 1989. 22 (3): 143–150.
  5. Ashcraft M.H., Kirk E.P. The relationships among working memory, math anxiety, and performance. J. Exp. Psychol. Gen. 2001. 130 (2): 224.
  6. Ashcraft M.H., Kirk E.P., Hopko D. On the cognitive consequences of mathematics anxiety. The development of mathematical skills. Ed Donlan C. London: Psychology Press, 2022: 174–196 pp.
  7. Blankenberger S. The arithmetic tie effect is mainly encoding-based. Cognition 2001. 82 (1): B15–B24.
  8. Daker R.J., Gattas S.U., Sokolowski H.M., Green A.E., Lyons I.M. First-year students’ math anxiety predicts STEM avoidance and underperformance throughout university, independently of math ability. Npj Sci. Learn. 2021. 6 (1): 17.
  9. Derrfuss J., Brass M., Neumann J., von Cramon D.Y. Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies. Hum. Brain Mapp. 2005. 25: 22–34.
  10. Dickson D.S., Cerda V.R., Beavers R.N., Ruiz A., Castañeda R., Wicha N.Y. When 2 × 4 is meaningful: The N400 and P300 reveal operand format effects in multiplication verification. Psychophysiology. 2018. 55 (11): e13212.
  11. Dickson D.S., Wicha N.Y. P300 amplitude and latency reflect arithmetic skill: An ERP study of the problem size effect. Biol. Psychol. 2019. 148: 107745.
  12. Domahs F., Domahs U., Schlesewsky M., Ratinckx E., Verguts T., Willmes K., Nuerk H.C. Neighborhood consistency in mental arithmetic: Behavioral and ERP evidence. Behav. Brain Funct. 2007. 3: 1–13.
  13. Eysenck M.W., Derakshan N. New perspectives in attentional control theory. Pers. Individ. Dif. 2011. 50: 955–960.
  14. Hartwright C.E., Looi C.Y., Sella F., Inuggi A., Santos F.H., González-Salinas C., García Santos J.M., Kadosh R.C., Fuentes L.J. The neurocognitive architecture of individual differences in math anxiety in typical children. Sci. Rep. 2018. 8 (1): 8500.
  15. Huang W.J., Chen W.W., Zhang X. The neurophysiology of P300 – an integrated review. Eur. Rev. Med. Pharmaco. 2015. 19(8): 1480–1488.
  16. Imbo I., Vandierendonck A. Practice effects on strategy selection and strategy efficiency in simple mental arithmetic. Psychol. Res. 2008. 72: 528–541.
  17. Jasinski E.C., Coch D. ERPs across arithmetic operations in a delayed answer verification task. Psychophysiology. 2012. 49 (7): 943–958.
  18. Jost K., Henninghausen E., Rfsler E. Comparing arithmetic and semantic fact retrieval: effects of problem size and sentence constraint on event-related brain potentials. Psychophysiology. 2004. 41:46–59.
  19. Jost K., Khader P.H., Burke M., Bien S., Rösler F. Frontal and parietal contributions to arithmetic fact retrieval: a parametric analysis of the problem‐size effect. Hum. Brain Mapp. 2011. 32 (1): 51–59.
  20. Kristjánsson Á., Ásgeirsson Á.G. Attentional priming: recent insights and current controversies. Curr. Opin. Psychol. 2019. 29: 71–75.
  21. Kutas M., Federmeier K.D. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 2011. 62: 621–647.
  22. Lyons I.M., Beilock S.L. When math hurts: Math anxiety predicts pain network activation in anticipation of doing math. PLoS ONE. 2012. 7 (10): e48076.
  23. Maloney E.A., Ansari D., Fugelsang J.A. The effect of mathematics anxiety on the processing of numerical magnitude. Q. J. Exp. Psychol. (Hove). 2011. 64 (1): 10–16.
  24. Núñez-Peña M.I. Effects of training on the arithmetic problem-size effect: An event-related potential study. Exp. Brain Res. 2008. 190 (1): 105–110.
  25. Núñez-Peña M.I., Gracia-Bafalluy M., Tubau E. Individual differences in arithmetic skill reflected in event-related brain potentials. Int. J. Psychophysiol. 2011. 80 (2): 143–149.
  26. Núñez-Peña M.I., Suárez-Pellicioni M. Processing false solutions in additions: differences between high -and lower-skilled arithmetic problem-solvers. Exp. Brain. Res. 2012. 218: 655–663.
  27. Núñez-Peña M.I., Suárez-Pellicioni M. Processing of multi-digit additions in high math-anxious individuals: psychophysiological evidence. Front Psychol. 2015. 6: 1268.
  28. Prieto-Corona B., Rodríguez-Camacho M., Silva-Pereyra J., Marosi E., Fernández T., Guerrero V. Event-related potentials findings differ between children and adults during arithmetic-fact retrieval. Neurosci. Lett. 2010. 468 (3): 220–224.
  29. Proverbio A.M., Carminati M. Electrophysiological markers of poor versus superior math abilities in healthy individuals. Eur. J. Neurosci. 2019. 50 (2): 1878–1891.
  30. Riggins T., Scott L.S. P300 development from infancy to adolescence. Psychophysiology. 2020. 57 (7): e13346.
  31. Shakmaeva A. Math anxiety – When the emotional brain paralyzes the thinking brain. Kwart Pedagogiczny. 2022. 264 (2): 11–27.30.
  32. Sowinski C., Dunbar K., Le Fevre J. Calculation fluency test (Unpublished technical report). 2014.
  33. Strauss M., Dehaene S. Detection of arithmetic violations during sleep. Sleep. 2019. 42 (3): zsy232.
  34. Suárez-Pellicioni M., Núñez-Peña M.I., Colomé À. Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases. Cogn. Affect. Behav. Neurosci. 2016. 16: 3–22.
  35. Sun J., Osth A.F., Feuerriegel D. The late positive event-related potential component is time locked to the decision in recognition memory tasks. Cortex. 2024. 176: 194–208.
  36. Taghizadeh S., Hashemi T., Jahan A., Nazari M.A. The neural differences of arithmetic verification performance depend on math skill: Evidence from event‐related potential. Neuropsychopharmacology Reports. 2021. 41 (1): 73–81.
  37. Wang C., Liu C. Mathematics anxiety and its effect on mental arithmetic. Adv. Psychol. Sci. 2007. 15 (5): 795.
  38. Wilson A.J., Revkin S.K., Cohen D., Cohen L., Dehaene S. An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behav. Brain. Funct. 2006. 2: 1–16.
  39. Young C.B., Wu S.S., Menon V. The neurodevelopmental basis of math anxiety. Psychol. Sci. 2012. 23 (5): 492–501.
  40. Zhang J., Zhao N., Kong Q.P. The relationship between math anxiety and math performance: A meta-analytic investigation. Front. Psychol. 2019. 10: 1613.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Event related potentials (ERPs) during conscious stimuli perception. The thin line shows ERPs in response to the correct solutions presentation, the thick line shows ERPs in response to the incorrect solutions presentation. The ERPs are shown for small and large problems for participants with high (left) and low (right) levels of mathematical anxiety. The dotted line shows the intervals of the ERPs components statistical analysis.

下载 (401KB)
3. Fig. 2. Event related potentials (ERPs) during unconscious stimuli perception. The thin line shows ERPs in response to the correct solutions presentation, the thick line shows ERPs in response to the incorrect solutions presentation. The ERPs are shown for small and large problems for participants with high (left) and low (right) levels of mathematical anxiety. The dotted line shows the intervals of the ERPs components statistical analysis.

下载 (404KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».